Enzymatic Activation and Continuous Electrochemical Production of Methane from Dilute CO2 Sources with a Self-Healing Capsule

化学 烟气 电催化剂 电解 电化学 甲烷 催化作用 本体电解 化学工程 基质(水族馆) 无机化学 电极 有机化学 循环伏安法 物理化学 工程类 海洋学 电解质 地质学
作者
Jinfeng Wang,Xu Jing,Yang Yang,Baijie Xu,Ruiming Jia,Chunying Duan
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
标识
DOI:10.1021/jacs.4c03367
摘要

Converting dilute CO2 source into value-added chemicals and fuels is a promising route to reduce fossil fuel consumption and greenhouse gas emission, but integrating electrocatalysis with CO2 capture still faced marked challenges. Herein, we show that a self-healing metal–organic macrocycle functionalized as an electrochemical catalyst to selectively produce methane from flue gas and air with the lowest applied potential so far (0.06 V vs reversible hydrogen electrode, RHE) through an enzymatic activation fashion. The capsule emulates the enzyme' pocket to abstract one in situ-formed CO2-adduct molecule with the commercial amino alcohols, forming an easy-to-reduce substrate-involving clathrate to combine the CO2 capture with electroreduction for a thorough CO2 reduction. We find that the self-healing system exhibited enzymatic kinetics for the first time with the Michaelis–Menten mechanism in the electrochemical reduction of CO2 and maintained a methane Faraday efficiency (FE) of 74.24% with a selectivity of over 99% for continuous operation over 200 h. A consecutive working lab at 50 mA·cm–2, in an eleven-for-one (10 h working and 1 h healing) electrolysis manner, gives a methane turnover number (TON) of more than 10,000 within 100 h. The integrated electrolysis with CO2 capture facilitates the thorough reduction of flue gas (ca. 13.0% of CO2) and first time of air (ca. 400 ppm of CO2 to 42.7 mL CH4 from 1.0 m3 air). The new self-healing strategy of molecular electrocatalyst with an enzymatic activation manner and anodic shifting of the applied potentials provided a departure from the existing electrochemical catalytic techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助SCI采纳,获得10
1秒前
老疯智发布了新的文献求助10
1秒前
sweetbearm应助通~采纳,获得10
1秒前
神凰完成签到,获得积分10
1秒前
Z小姐发布了新的文献求助10
2秒前
NexusExplorer应助白泽采纳,获得10
2秒前
3秒前
3秒前
火星上妙梦完成签到 ,获得积分10
3秒前
赘婿应助mayungui采纳,获得10
3秒前
贾不可发布了新的文献求助10
4秒前
英俊梦槐发布了新的文献求助30
4秒前
Xu完成签到,获得积分10
5秒前
5秒前
秀丽千山完成签到,获得积分10
5秒前
6秒前
7秒前
哈哈哈哈完成签到,获得积分10
7秒前
沧海泪发布了新的文献求助10
8秒前
小胡先森应助凤凰山采纳,获得10
8秒前
一一完成签到,获得积分10
8秒前
惠惠发布了新的文献求助10
8秒前
shotgod完成签到,获得积分20
9秒前
科研通AI5应助蕾子采纳,获得10
9秒前
happy杨完成签到 ,获得积分10
9秒前
lichaoyes发布了新的文献求助10
9秒前
9秒前
Owen应助通~采纳,获得10
9秒前
封闭货车发布了新的文献求助10
10秒前
10秒前
www发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
12秒前
shotgod发布了新的文献求助10
12秒前
ling玲完成签到,获得积分10
12秒前
奔奔发布了新的文献求助10
12秒前
SweepingMonk应助虚心盼晴采纳,获得10
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794