Partition-Level Tensor Learning-Based Multiview Unsupervised Feature Selection

分拆(数论) 特征选择 人工智能 模式识别(心理学) 计算机科学 张量(固有定义) 无监督学习 特征(语言学) 选择(遗传算法) 数学 机器学习 几何学 组合数学 语言学 哲学
作者
Zhiwen Cao,Xijiong Xie
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tnnls.2024.3482440
摘要

Multiview unsupervised feature selection is an emerging direction in the machine learning community because of its ability to identify informative patterns and reduce the dimensionality of multiview data. Although numerous methods have been proposed and shown to be effective, they have some limitations: 1) most existing algorithms fail to improve the model performance along the view dimension; 2) they rarely incorporate more discriminative partition information; and 3) the negative effects of marginal samples are not considered. To solve these problems, we propose a novel method termed as partition-level tensor learning-based multiview unsupervised feature selection (PTFS). The proposed method optimizes a low-rank constrained tensor assembled by the inner product of base partition matrices. By doing so, PTFS simultaneously leverages the high-order view correlation and indirectly integrates discriminative partition information. Besides, a statistic-based adaptive self-paced strategy is introduced to ensure that confident samples are prioritized for training the model. Moreover, an effective alternating optimization method is designed to solve the resulting optimization problem. Extensive experiments on ten datasets demonstrate the effectiveness and efficiency of the proposed method compared to the state-of-the-art methods. The code is available at https://github.com/HdTgon/2023-TNNLS-PTFS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liutao完成签到,获得积分10
4秒前
小马甲应助梦幻采纳,获得10
7秒前
子车茗应助六六采纳,获得30
8秒前
8秒前
8秒前
11秒前
Yu_6nd23完成签到,获得积分20
11秒前
hanshiyi完成签到,获得积分10
12秒前
yuan完成签到 ,获得积分10
12秒前
BWZ发布了新的文献求助10
13秒前
13秒前
JMrider发布了新的文献求助10
14秒前
kqkqk完成签到,获得积分10
14秒前
15秒前
15秒前
16秒前
Ericlee发布了新的文献求助10
16秒前
16秒前
小罗完成签到,获得积分10
19秒前
19秒前
热心访风完成签到,获得积分10
20秒前
yang发布了新的文献求助10
20秒前
Ava应助彪壮的青雪采纳,获得10
20秒前
呆萌语梦发布了新的文献求助10
20秒前
Rita完成签到,获得积分10
21秒前
桂花酒酿发布了新的文献求助10
21秒前
852应助文艺的匪采纳,获得10
21秒前
健康的抽屉完成签到,获得积分10
21秒前
小罗发布了新的文献求助10
21秒前
22秒前
kkjl发布了新的文献求助20
23秒前
wjx关注了科研通微信公众号
23秒前
梦幻发布了新的文献求助10
24秒前
希望天下0贩的0应助ing采纳,获得10
24秒前
初(*^▽^*)心完成签到,获得积分10
25秒前
25秒前
27秒前
27秒前
顾台关注了科研通微信公众号
27秒前
Akim应助卫文奎采纳,获得10
27秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247717
求助须知:如何正确求助?哪些是违规求助? 2890987
关于积分的说明 8265743
捐赠科研通 2559230
什么是DOI,文献DOI怎么找? 1388048
科研通“疑难数据库(出版商)”最低求助积分说明 650670
邀请新用户注册赠送积分活动 627571