亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hierarchical deep learning for autonomous multi-label arrhythmia detection and classification on real-world wearable electrocardiogram data

心律失常 人工智能 可穿戴计算机 F1得分 计算机科学 深度学习 二元分类 可穿戴技术 模式识别(心理学) 机器学习 医学 心房颤动 心脏病学 支持向量机 嵌入式系统
作者
Guangyao Zheng,Sunghan Lee,Jeonghwan Koh,Khushbu Pahwa,Haoran Li,Zicheng Xu,Haiming Sun,Junqiang Su,Sung Pil Cho,Sung Il Im,In Cheol Jeong,Vladimir Braverman
出处
期刊:Digital health [SAGE]
卷期号:10
标识
DOI:10.1177/20552076241278942
摘要

Objective Arrhythmia detection and classification are challenging because of the imbalanced ratio of normal heartbeats to arrhythmia heartbeats and the complicated combinations of arrhythmia types. Arrhythmia classification on wearable electrocardiogram monitoring devices poses a further unique challenge: unlike clinically used electrocardiogram monitoring devices, the environments in which wearable devices are deployed are drastically different from the carefully controlled clinical environment, leading to significantly more noise, thus making arrhythmia classification more difficult. Methods We propose a novel hierarchical model based on CNN+BiLSTM with Attention to arrhythmia detection, consisting of a binary classification module between normal and arrhythmia heartbeats and a multi-label classification module for classifying arrhythmia events across combinations of beat and rhythm arrhythmia types. We evaluate our method on our proprietary dataset and compare it with various baselines, including CNN+BiGRU with Attention, ConViT, EfficientNet, and ResNet, as well as previous state-of-the-art frameworks. Results Our model outperforms existing baselines on the proprietary dataset, resulting in an average accuracy, F1-score, and AUC score of 95%, 0.838, 0.906 for binary classification, and 88%, 0.736, 0.875 for multi-label classification. Conclusions Our results validate the ability of our model to detect and classify real-world arrhythmia. Our framework could revolutionize arrhythmia diagnosis by reducing the burden on cardiologists, providing more personalized treatment, and achieving emergency intervention of patients by allowing real-time monitoring of arrhythmia occurrence.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ktw完成签到,获得积分10
18秒前
景行行止完成签到 ,获得积分10
41秒前
1分钟前
1分钟前
1分钟前
1分钟前
QQ完成签到 ,获得积分10
1分钟前
林鹏达发布了新的文献求助10
1分钟前
白菜完成签到 ,获得积分10
1分钟前
1分钟前
乐乐应助lourahan采纳,获得10
1分钟前
2分钟前
2分钟前
back you up完成签到,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
lourahan发布了新的文献求助10
3分钟前
Leon应助科研通管家采纳,获得20
3分钟前
Leon应助科研通管家采纳,获得20
3分钟前
爱静静应助眼里的萧萧雨采纳,获得10
3分钟前
3分钟前
3分钟前
贪玩宛秋发布了新的文献求助10
3分钟前
3分钟前
4分钟前
科研小白发布了新的文献求助10
4分钟前
4分钟前
旺仔发布了新的文献求助10
4分钟前
4分钟前
科研小白完成签到,获得积分10
5分钟前
5分钟前
哈哈哈发布了新的文献求助10
5分钟前
香蕉觅云应助哈哈哈采纳,获得10
5分钟前
5分钟前
5分钟前
6分钟前
NexusExplorer应助Gryphon采纳,获得10
6分钟前
6分钟前
6分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544431
求助须知:如何正确求助?哪些是违规求助? 3121630
关于积分的说明 9348120
捐赠科研通 2819899
什么是DOI,文献DOI怎么找? 1550514
邀请新用户注册赠送积分活动 722559
科研通“疑难数据库(出版商)”最低求助积分说明 713273