普鲁士蓝
析氧
分解水
过电位
催化作用
氧化还原
化学
溶解
氧气
过渡金属
钴
电解水
无机化学
化学工程
电解
电化学
电极
物理化学
电解质
有机化学
工程类
光催化
作者
Hao Xu,Chen Zhu,Hao Lin,Ji Kai Liu,Yi Xiao Wu,Huai Qin Fu,Xinyu Zhang,Fangxin Mao,Hai Yang Yuan,Chenghua Sun,Peng Fei Liu,Hua Gui Yang,Peng Fei Liu,Hua Gui Yang
出处
期刊:Angewandte Chemie
[Wiley]
日期:2024-10-16
卷期号:64 (3): e202415423-e202415423
被引量:45
标识
DOI:10.1002/anie.202415423
摘要
Abstract In the context of oxygen evolution reaction (OER), the construction of high‐valence transition metal sites to trigger the lattice oxygen oxidation mechanism is considered crucial for overcoming the performance limitations of traditional adsorbate evolution mechanism. However, the dynamic evolution of lattice oxygen during the reaction poses significant challenges for the stability of high‐valence metal sites, particularly in high‐current‐density water‐splitting systems. Here, we have successfully constructed Co−O−Fe catalytic active motifs in cobalt‐iron Prussian blue analogs (CoFe‐PBA) through oxygen plasma bombardment, effectively activating lattice oxygen reactivity while sustaining robust stability. Our spectroscopic and theoretical studies reveal that the Co−O−Fe bridged motifs enable a unique double‐exchange interaction between Co and Fe atoms, promoting the formation of high‐valence Co species as OER active centers while maintaining Fe in a low‐valence state, preventing its dissolution. The resultant catalyst (CoFe‐PBA‐30) requires an overpotential of only 276 mV to achieve 1000 mA cm −2 . Furthermore, the assembled alkaline exchange membrane electrolyzer using CoFe‐PBA‐30 as anode material achieves a high current density of 1 A cm −2 at 1.76 V and continuously operates for 250 hours with negligible degradation. This work provides significant insights for activating lattice oxygen redox without compromising structure stability in practical water electrolyzers.
科研通智能强力驱动
Strongly Powered by AbleSci AI