Crack Detection, Classification, and Segmentation on Road Pavement Material Using Multi-Scale Feature Aggregation and Transformer-Based Attention Mechanisms

分割 结构工程 变压器 计算机科学 法律工程学 土木工程 模式识别(心理学) 工程类 人工智能 电压 电气工程
作者
Arselan Ashraf,Ali Sophian,Ali Aryo Bawono
出处
期刊:Construction materials [MDPI AG]
卷期号:4 (4): 655-675
标识
DOI:10.3390/constrmater4040036
摘要

This paper introduces a novel approach to pavement material crack detection, classification, and segmentation using advanced deep learning techniques, including multi-scale feature aggregation and transformer-based attention mechanisms. The proposed methodology significantly enhances the model’s ability to handle varying crack sizes, shapes, and complex pavement textures. Trained on a dataset of 10,000 images, the model achieved substantial performance improvements across all tasks after integrating transformer-based attention. Detection precision increased from 88.7% to 94.3%, and IoU improved from 78.8% to 93.2%. In classification, precision rose from 88.3% to 94.8%, and recall improved from 86.8% to 94.2%. For segmentation, the Dice Coefficient increased from 80.3% to 94.7%, and IoU for segmentation advanced from 74.2% to 92.3%. These results underscore the model’s robustness and accuracy in identifying pavement cracks in challenging real-world scenarios. This framework not only advances automated pavement maintenance but also provides a foundation for future research focused on optimizing real-time processing and extending the model’s applicability to more diverse pavement conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助极速小鱼采纳,获得10
刚刚
1秒前
默默的问玉完成签到,获得积分10
2秒前
wanci应助happiness采纳,获得10
2秒前
小马嘻嘻发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
int0030应助科研通管家采纳,获得10
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
隐形曼青应助科研通管家采纳,获得20
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
无极微光应助科研通管家采纳,获得20
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
玄风应助科研通管家采纳,获得20
4秒前
buno应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
4秒前
田様应助科研通管家采纳,获得10
4秒前
buno应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
5秒前
小糖完成签到,获得积分10
6秒前
科研通AI6应助分隔符采纳,获得10
6秒前
6秒前
李卓霖发布了新的文献求助10
7秒前
贾方硕发布了新的文献求助10
7秒前
7秒前
单纯的敏发布了新的文献求助10
8秒前
8秒前
葛子文完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618509
求助须知:如何正确求助?哪些是违规求助? 4703442
关于积分的说明 14922480
捐赠科研通 4757656
什么是DOI,文献DOI怎么找? 2550107
邀请新用户注册赠送积分活动 1512947
关于科研通互助平台的介绍 1474299