Automated Bio-AFM Generation of Large Mechanome Data Set and Their Analysis by Machine Learning to Classify Cancerous Cell Lines

细胞培养 人工智能 数据集 细胞 成纤维细胞 原子力显微镜 材料科学 计算机科学 纳米技术 机器学习 生物医学工程 模式识别(心理学) 生物 工程类 遗传学
作者
Ophélie Thomas - - Chemin,Childérick Severac,Aziz Moumen,Adrián Martínez-Rivas,Coralie Fontaine,M.V. Le Lann,Emmanuelle Trévisiol,Étienne Dague
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (34): 44504-44517
标识
DOI:10.1021/acsami.4c09218
摘要

Mechanobiological measurements have the potential to discriminate healthy cells from pathological cells. However, a technology frequently used to measure these properties, i.e., atomic force microscopy (AFM), suffers from its low output and lack of standardization. In this work, we have optimized AFM mechanical measurement on cell populations and developed a technology combining cell patterning and AFM automation that has the potential to record data on hundreds of cells (956 cells measured for publication). On each cell, 16 force curves (FCs) and seven features/FC, constituting the mechanome, were calculated. All of the FCs were then classified using machine learning tools with a statistical approach based on a fuzzy logic algorithm, trained to discriminate between nonmalignant and cancerous cells (training base, up to 120 cells/cell line). The proof of concept was first made on prostate nonmalignant (RWPE-1) and cancerous cell lines (PC3-GFP), then on nonmalignant (Hs 895.Sk) and cancerous (Hs 895.T) skin fibroblast cell lines, and demonstrated the ability of our method to classify correctly 73% of the cells (194 cells in the database/cell line) despite the very high degree of similarity of the whole set of measurements (79-100% similarity).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
YANG发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
迟大猫应助旭a采纳,获得10
2秒前
柚子皮应助大大小小采纳,获得30
3秒前
科研通AI5应助大大小小采纳,获得10
3秒前
彭于晏应助123采纳,获得30
3秒前
5秒前
cxh关闭了cxh文献求助
5秒前
6秒前
老吴本人发布了新的文献求助10
7秒前
小混分怪发布了新的文献求助10
7秒前
8秒前
8秒前
Owen应助MX001采纳,获得10
9秒前
Owen应助pan采纳,获得10
9秒前
李健应助zhaohao采纳,获得10
9秒前
agui发布了新的文献求助10
10秒前
10秒前
幸福龙猫发布了新的文献求助10
11秒前
背后的瑾瑜完成签到,获得积分10
11秒前
安安完成签到 ,获得积分10
11秒前
华仔应助xusuizi采纳,获得10
12秒前
麻花阳应助半烟采纳,获得10
12秒前
甜滋滋完成签到,获得积分10
13秒前
13秒前
大模型应助丙烯酸树脂采纳,获得10
14秒前
ww完成签到,获得积分10
15秒前
在水一方应助Zhaowx采纳,获得10
15秒前
fatevaa发布了新的文献求助10
15秒前
浅攻扰耕章楶完成签到 ,获得积分10
15秒前
16秒前
勤恳的蜜蜂完成签到,获得积分10
17秒前
messyJ完成签到,获得积分10
18秒前
刘茂甫发布了新的文献求助10
18秒前
18秒前
JIANGCHUNYAN发布了新的文献求助10
19秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3554566
求助须知:如何正确求助?哪些是违规求助? 3130354
关于积分的说明 9386677
捐赠科研通 2829714
什么是DOI,文献DOI怎么找? 1555657
邀请新用户注册赠送积分活动 726245
科研通“疑难数据库(出版商)”最低求助积分说明 715493