Changes in biomass and organic carbon content during the growth period of dominant seaweed in the intertidal zone of Gouqi Island, China

句号(音乐) 潮间带 生物量(生态学) 环境科学 总有机碳 藻类 碳纤维 中国 海洋学 生态学 地理 生物 地质学 数学 物理 复合数 考古 声学 算法
作者
Jianqu Chen,Yuanmin Sun,Kai Wang,Xu Zhao,Jun Li,Jie Chen,Zhangbin Liu,Shouyu Zhang,Xunmeng Li
出处
期刊:Journal of Applied Remote Sensing [SPIE - International Society for Optical Engineering]
卷期号:18 (03)
标识
DOI:10.1117/1.jrs.18.034513
摘要

Seaweed biomass is mainly investigated using quadrat sampling. However, the spatial limitations of quadrat sampling pose significant challenges to the thorough evaluation of seaweed resources at a larger scale. We combined multispectral photography collected using an unmanned aerial vehicle with satellite imagery and in situ hyperspectral reflectance measurement to determine the biomass of Ulva pertusa and Sargassum spp. in the intertidal zone of Gouqi Island, Zhejiang Province, China. The statistical metrics derived from aerial imagery for the biomass estimation of Ulva pertusa and Sargassum spp. achieved coefficients of determination (R2) of 0.81 and 0.74, root mean square errors (RMSE) of 96.54 and 788.64 g/m2, and mean absolute errors (MAE) of 40.71 and 327.12 g/m2, respectively. For satellite imagery, the R2 values were 0.80 and 0.68, RMSE were 97.65 and 910.45 g/m2, and MAE were 71.78 and 719.69 g/m2, respectively. The biomass of U. pertusa and Sargassum spp. fluctuated monthly, reaching their highest values in June and July, respectively. The total biomass of U. pertusa and Sargassum spp. was 1.69×107 and 9.93×107 g, and the organic carbon content was 7.98×105 and 5.04×106 g, respectively. Our research offers a new perspective and methodology, supplying critical data and a scientific rationale for the management of marine assets and the safeguarding of coastal ecologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
FashionBoy应助科研民工采纳,获得10
2秒前
灿烂千阳完成签到,获得积分20
2秒前
2秒前
3秒前
3秒前
NXK发布了新的文献求助10
3秒前
3秒前
3秒前
SciGPT应助no1isme采纳,获得10
3秒前
瓜瓜发布了新的文献求助10
3秒前
饱满的诗霜关注了科研通微信公众号
4秒前
cc应助wing采纳,获得20
4秒前
211发布了新的文献求助10
4秒前
修越完成签到,获得积分10
5秒前
CodeCraft应助Regina采纳,获得10
5秒前
情怀应助xixilamn采纳,获得10
5秒前
壮壮发布了新的文献求助10
6秒前
在水一方应助小新同学采纳,获得10
6秒前
7秒前
7秒前
Owen应助sule采纳,获得10
7秒前
7秒前
修越发布了新的文献求助10
7秒前
大模型应助荻野千寻采纳,获得10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
xiaowang发布了新的文献求助10
8秒前
9秒前
lintao0836完成签到,获得积分20
9秒前
9秒前
10秒前
xxx发布了新的文献求助10
10秒前
11秒前
粗心的忆山完成签到,获得积分10
11秒前
英俊的铭应助wise111采纳,获得10
12秒前
瑁mao完成签到 ,获得积分10
12秒前
Orange应助cc采纳,获得10
13秒前
阔达丹亦发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727863
求助须知:如何正确求助?哪些是违规求助? 5310392
关于积分的说明 15312447
捐赠科研通 4875237
什么是DOI,文献DOI怎么找? 2618649
邀请新用户注册赠送积分活动 1568278
关于科研通互助平台的介绍 1524932