Deep learning detector for high precision monitoring of cell encapsulation statistics in microfluidic droplets

探测器 微流控 封装(网络) 计算机科学 色谱法 化学 纳米技术 材料科学 计算机安全 电信
作者
Karl Gardner,Md Mezbah Uddin,Linh M. Tran,Thanh Quang Pham,Siva A. Vanapalli,Wei Li
出处
期刊:Lab on a Chip [The Royal Society of Chemistry]
卷期号:22 (21): 4067-4080 被引量:31
标识
DOI:10.1039/d2lc00462c
摘要

Encapsulation of cells inside microfluidic droplets is central to several applications involving cellular analysis. Although, theoretically the encapsulation statistics are expected to follow a Poisson distribution, experimentally this may not be achieved due to lack of full control of the experimental variables and conditions. Therefore, there is a need for automatic detection of droplets and cell count enumeration within droplets so a process control feedback to adjust experimental conditions can be implemented. In this study, we use a deep learning object detector called You Only Look Once (YOLO), an influential class of object detectors with several benefits over traditional methods. This paper investigates the application of both YOLOv3 and YOLOv5 object detectors in the development of an automated droplet and cell detector. Experimental data was obtained from a microfluidic flow focusing device with a dispersed phase of cancer cells. The microfluidic device contained an expansion chamber downstream of the droplet generator, allowing for visualization and recording of cell-encapsulated droplet images. In the procedure, a droplet bounding box is predicted, then cropped from the original image for the individual cells to be detected through a separate model for further examination. The system includes a production set for additional performance analysis with Poisson statistics while providing an experimental workflow with both droplet and cell models. The training set is collected and preprocessed before labeling and applying image augmentations, allowing for a generalizable object detector. Precision and recall were utilized as a validation and test set metric, resulting in a high mean average precision (mAP) metric for an accurate droplet detector. To examine model limitations, the predictions were compared to ground truth labels, illustrating that the YOLO predictions closely matched with the droplet and cell labels. Furthermore, it is demonstrated that droplet enumeration from the YOLOv5 model is consistent with hand counted ratios and the Poisson distribution, confirming that the platform can be used in real-time experiments for cell encapsulation optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
su完成签到 ,获得积分10
2秒前
思源应助yanyan采纳,获得10
3秒前
秀丽烨霖应助junjun采纳,获得10
5秒前
5秒前
zhaoyaoshi完成签到 ,获得积分10
5秒前
Hum0ro98完成签到,获得积分10
5秒前
keyanxiaobai完成签到,获得积分10
5秒前
AbMole_小智完成签到 ,获得积分10
6秒前
小小邹发布了新的文献求助10
6秒前
ggyybb完成签到 ,获得积分10
6秒前
小Q啊啾发布了新的文献求助10
6秒前
花开富贵发布了新的文献求助10
7秒前
丹丹完成签到,获得积分10
7秒前
sai完成签到,获得积分10
7秒前
哔哔鱼发布了新的文献求助10
7秒前
7秒前
惠若烟完成签到,获得积分10
7秒前
王黎应助ee采纳,获得30
7秒前
Gao_Z_X完成签到 ,获得积分10
8秒前
搜集达人应助阔达的太阳采纳,获得10
9秒前
陈陈陈完成签到,获得积分10
9秒前
10秒前
10秒前
小吉发布了新的文献求助10
10秒前
华仔应助墨aizhan采纳,获得10
10秒前
10秒前
11秒前
56789发布了新的文献求助10
11秒前
xueshufengbujue完成签到,获得积分10
11秒前
道以文完成签到,获得积分10
11秒前
CipherSage应助摩西西采纳,获得10
11秒前
活力的听露完成签到 ,获得积分10
12秒前
12秒前
斯文败类应助幻翎采纳,获得10
12秒前
兜兜完成签到 ,获得积分10
13秒前
郭猜猜发布了新的文献求助10
13秒前
orixero应助小Q啊啾采纳,获得10
14秒前
gelinhao完成签到,获得积分10
14秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257400
求助须知:如何正确求助?哪些是违规求助? 2899333
关于积分的说明 8305202
捐赠科研通 2568637
什么是DOI,文献DOI怎么找? 1395187
科研通“疑难数据库(出版商)”最低求助积分说明 652967
邀请新用户注册赠送积分活动 630755