已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning detector for high precision monitoring of cell encapsulation statistics in microfluidic droplets

探测器 微流控 封装(网络) 计算机科学 色谱法 化学 纳米技术 材料科学 计算机安全 电信
作者
Karl Gardner,Md Mezbah Uddin,Linh M. Tran,Thanh Quang Pham,Siva A. Vanapalli,Wei Li
出处
期刊:Lab on a Chip [The Royal Society of Chemistry]
卷期号:22 (21): 4067-4080 被引量:35
标识
DOI:10.1039/d2lc00462c
摘要

Encapsulation of cells inside microfluidic droplets is central to several applications involving cellular analysis. Although, theoretically the encapsulation statistics are expected to follow a Poisson distribution, experimentally this may not be achieved due to lack of full control of the experimental variables and conditions. Therefore, there is a need for automatic detection of droplets and cell count enumeration within droplets so a process control feedback to adjust experimental conditions can be implemented. In this study, we use a deep learning object detector called You Only Look Once (YOLO), an influential class of object detectors with several benefits over traditional methods. This paper investigates the application of both YOLOv3 and YOLOv5 object detectors in the development of an automated droplet and cell detector. Experimental data was obtained from a microfluidic flow focusing device with a dispersed phase of cancer cells. The microfluidic device contained an expansion chamber downstream of the droplet generator, allowing for visualization and recording of cell-encapsulated droplet images. In the procedure, a droplet bounding box is predicted, then cropped from the original image for the individual cells to be detected through a separate model for further examination. The system includes a production set for additional performance analysis with Poisson statistics while providing an experimental workflow with both droplet and cell models. The training set is collected and preprocessed before labeling and applying image augmentations, allowing for a generalizable object detector. Precision and recall were utilized as a validation and test set metric, resulting in a high mean average precision (mAP) metric for an accurate droplet detector. To examine model limitations, the predictions were compared to ground truth labels, illustrating that the YOLO predictions closely matched with the droplet and cell labels. Furthermore, it is demonstrated that droplet enumeration from the YOLOv5 model is consistent with hand counted ratios and the Poisson distribution, confirming that the platform can be used in real-time experiments for cell encapsulation optimization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘恩瑜完成签到 ,获得积分10
2秒前
deletelzr完成签到,获得积分10
2秒前
CC完成签到 ,获得积分10
2秒前
Xx发布了新的文献求助10
3秒前
王平安完成签到 ,获得积分10
5秒前
Sdpol完成签到,获得积分10
5秒前
汪姝发布了新的文献求助10
5秒前
星辰大海应助Xx采纳,获得10
9秒前
田様应助逆天大脚采纳,获得10
11秒前
漂亮糖豆完成签到 ,获得积分10
13秒前
16秒前
zw完成签到 ,获得积分10
17秒前
oshunne发布了新的文献求助80
19秒前
ZH完成签到 ,获得积分10
20秒前
Sixth_GOD完成签到,获得积分10
22秒前
芊芊君子发布了新的文献求助20
22秒前
杨易完成签到 ,获得积分10
24秒前
谦让的冰海完成签到,获得积分10
27秒前
立麦完成签到 ,获得积分10
27秒前
小歘歘完成签到 ,获得积分10
28秒前
29秒前
30秒前
研友_VZG7GZ应助诸天真采纳,获得10
30秒前
33秒前
逆天大脚发布了新的文献求助10
34秒前
小蘑菇应助大喵采纳,获得10
35秒前
Kristine完成签到 ,获得积分10
37秒前
VV2001发布了新的文献求助10
39秒前
Ying完成签到,获得积分10
42秒前
43秒前
dream完成签到 ,获得积分10
44秒前
44秒前
梁吃鱼完成签到,获得积分10
45秒前
45秒前
闲听花落完成签到,获得积分10
45秒前
Fng11发布了新的文献求助20
45秒前
我不到啊完成签到 ,获得积分10
46秒前
陈谦嵩完成签到 ,获得积分10
47秒前
Krim完成签到 ,获得积分0
47秒前
VV2001完成签到,获得积分10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639400
求助须知:如何正确求助?哪些是违规求助? 4748007
关于积分的说明 15006238
捐赠科研通 4797572
什么是DOI,文献DOI怎么找? 2563542
邀请新用户注册赠送积分活动 1522544
关于科研通互助平台的介绍 1482258