清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep learning detector for high precision monitoring of cell encapsulation statistics in microfluidic droplets

探测器 微流控 封装(网络) 计算机科学 色谱法 化学 纳米技术 材料科学 计算机安全 电信
作者
Karl Gardner,Md Mezbah Uddin,Linh M. Tran,Thanh Quang Pham,Siva A. Vanapalli,Wei Li
出处
期刊:Lab on a Chip [The Royal Society of Chemistry]
卷期号:22 (21): 4067-4080 被引量:35
标识
DOI:10.1039/d2lc00462c
摘要

Encapsulation of cells inside microfluidic droplets is central to several applications involving cellular analysis. Although, theoretically the encapsulation statistics are expected to follow a Poisson distribution, experimentally this may not be achieved due to lack of full control of the experimental variables and conditions. Therefore, there is a need for automatic detection of droplets and cell count enumeration within droplets so a process control feedback to adjust experimental conditions can be implemented. In this study, we use a deep learning object detector called You Only Look Once (YOLO), an influential class of object detectors with several benefits over traditional methods. This paper investigates the application of both YOLOv3 and YOLOv5 object detectors in the development of an automated droplet and cell detector. Experimental data was obtained from a microfluidic flow focusing device with a dispersed phase of cancer cells. The microfluidic device contained an expansion chamber downstream of the droplet generator, allowing for visualization and recording of cell-encapsulated droplet images. In the procedure, a droplet bounding box is predicted, then cropped from the original image for the individual cells to be detected through a separate model for further examination. The system includes a production set for additional performance analysis with Poisson statistics while providing an experimental workflow with both droplet and cell models. The training set is collected and preprocessed before labeling and applying image augmentations, allowing for a generalizable object detector. Precision and recall were utilized as a validation and test set metric, resulting in a high mean average precision (mAP) metric for an accurate droplet detector. To examine model limitations, the predictions were compared to ground truth labels, illustrating that the YOLO predictions closely matched with the droplet and cell labels. Furthermore, it is demonstrated that droplet enumeration from the YOLOv5 model is consistent with hand counted ratios and the Poisson distribution, confirming that the platform can be used in real-time experiments for cell encapsulation optimization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时老完成签到 ,获得积分10
26秒前
闲人颦儿完成签到,获得积分10
35秒前
47秒前
48秒前
1分钟前
1分钟前
笔墨纸砚完成签到 ,获得积分10
2分钟前
阿洁完成签到,获得积分10
2分钟前
阿洁发布了新的文献求助10
2分钟前
复杂白凡应助阿洁采纳,获得10
2分钟前
菠萝包完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI6应助Maomaojiangjiang采纳,获得10
3分钟前
3分钟前
KINGAZX完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
打打应助科研通管家采纳,获得10
3分钟前
3分钟前
充电宝应助哭泣的芷蝶采纳,获得10
3分钟前
江南之南完成签到 ,获得积分10
3分钟前
4分钟前
chichenglin完成签到 ,获得积分0
4分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
斯文听寒完成签到 ,获得积分10
5分钟前
6分钟前
HS完成签到,获得积分10
6分钟前
MLR发布了新的文献求助10
6分钟前
6分钟前
vitamin完成签到 ,获得积分10
6分钟前
6分钟前
thginK9z完成签到,获得积分10
7分钟前
mzhang2完成签到 ,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得30
7分钟前
打打应助hamliton采纳,获得10
7分钟前
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5529358
求助须知:如何正确求助?哪些是违规求助? 4618481
关于积分的说明 14562694
捐赠科研通 4557545
什么是DOI,文献DOI怎么找? 2497604
邀请新用户注册赠送积分活动 1477776
关于科研通互助平台的介绍 1449269