Deep learning detector for high precision monitoring of cell encapsulation statistics in microfluidic droplets

探测器 微流控 封装(网络) 计算机科学 色谱法 化学 纳米技术 材料科学 计算机安全 电信
作者
Karl Gardner,Md Mezbah Uddin,Linh M. Tran,Thanh Quang Pham,Siva A. Vanapalli,Wei Li
出处
期刊:Lab on a Chip [The Royal Society of Chemistry]
卷期号:22 (21): 4067-4080 被引量:35
标识
DOI:10.1039/d2lc00462c
摘要

Encapsulation of cells inside microfluidic droplets is central to several applications involving cellular analysis. Although, theoretically the encapsulation statistics are expected to follow a Poisson distribution, experimentally this may not be achieved due to lack of full control of the experimental variables and conditions. Therefore, there is a need for automatic detection of droplets and cell count enumeration within droplets so a process control feedback to adjust experimental conditions can be implemented. In this study, we use a deep learning object detector called You Only Look Once (YOLO), an influential class of object detectors with several benefits over traditional methods. This paper investigates the application of both YOLOv3 and YOLOv5 object detectors in the development of an automated droplet and cell detector. Experimental data was obtained from a microfluidic flow focusing device with a dispersed phase of cancer cells. The microfluidic device contained an expansion chamber downstream of the droplet generator, allowing for visualization and recording of cell-encapsulated droplet images. In the procedure, a droplet bounding box is predicted, then cropped from the original image for the individual cells to be detected through a separate model for further examination. The system includes a production set for additional performance analysis with Poisson statistics while providing an experimental workflow with both droplet and cell models. The training set is collected and preprocessed before labeling and applying image augmentations, allowing for a generalizable object detector. Precision and recall were utilized as a validation and test set metric, resulting in a high mean average precision (mAP) metric for an accurate droplet detector. To examine model limitations, the predictions were compared to ground truth labels, illustrating that the YOLO predictions closely matched with the droplet and cell labels. Furthermore, it is demonstrated that droplet enumeration from the YOLOv5 model is consistent with hand counted ratios and the Poisson distribution, confirming that the platform can be used in real-time experiments for cell encapsulation optimization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助潇洒的冰淇淋采纳,获得10
刚刚
Stella应助封夜采纳,获得10
刚刚
呀呀呀呀发布了新的文献求助30
1秒前
淡然善斓完成签到,获得积分10
1秒前
一颗药顽完成签到,获得积分10
1秒前
方俊驰发布了新的文献求助10
1秒前
1秒前
1秒前
阳阳完成签到,获得积分10
2秒前
打倒恶人完成签到,获得积分10
2秒前
wyy完成签到,获得积分10
2秒前
Hangerli完成签到,获得积分20
2秒前
上官若男应助TaiLongYang采纳,获得10
2秒前
酷波er应助低温少年采纳,获得10
2秒前
灵犀完成签到 ,获得积分10
2秒前
hjx完成签到,获得积分10
3秒前
碧蓝贞发布了新的文献求助10
3秒前
3秒前
hhhh_xt完成签到,获得积分10
4秒前
小白完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
小马的可爱老婆完成签到,获得积分10
4秒前
4秒前
cyy1226发布了新的文献求助10
4秒前
wwww完成签到,获得积分10
4秒前
文献小聂发布了新的文献求助10
4秒前
5秒前
蔺映秋完成签到,获得积分10
5秒前
hhhhhhan616完成签到,获得积分10
6秒前
6秒前
yu完成签到,获得积分20
6秒前
6秒前
728发布了新的文献求助10
6秒前
科研通AI2S应助塵埃采纳,获得10
7秒前
7秒前
YB完成签到,获得积分10
8秒前
yyq617569158完成签到,获得积分20
8秒前
Csy完成签到,获得积分10
8秒前
奋斗静蕾发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997