Deep learning detector for high precision monitoring of cell encapsulation statistics in microfluidic droplets

探测器 微流控 封装(网络) 计算机科学 色谱法 化学 纳米技术 材料科学 计算机安全 电信
作者
Karl Gardner,Md Mezbah Uddin,Linh M. Tran,Thanh Quang Pham,Siva A. Vanapalli,Wei Li
出处
期刊:Lab on a Chip [The Royal Society of Chemistry]
卷期号:22 (21): 4067-4080 被引量:31
标识
DOI:10.1039/d2lc00462c
摘要

Encapsulation of cells inside microfluidic droplets is central to several applications involving cellular analysis. Although, theoretically the encapsulation statistics are expected to follow a Poisson distribution, experimentally this may not be achieved due to lack of full control of the experimental variables and conditions. Therefore, there is a need for automatic detection of droplets and cell count enumeration within droplets so a process control feedback to adjust experimental conditions can be implemented. In this study, we use a deep learning object detector called You Only Look Once (YOLO), an influential class of object detectors with several benefits over traditional methods. This paper investigates the application of both YOLOv3 and YOLOv5 object detectors in the development of an automated droplet and cell detector. Experimental data was obtained from a microfluidic flow focusing device with a dispersed phase of cancer cells. The microfluidic device contained an expansion chamber downstream of the droplet generator, allowing for visualization and recording of cell-encapsulated droplet images. In the procedure, a droplet bounding box is predicted, then cropped from the original image for the individual cells to be detected through a separate model for further examination. The system includes a production set for additional performance analysis with Poisson statistics while providing an experimental workflow with both droplet and cell models. The training set is collected and preprocessed before labeling and applying image augmentations, allowing for a generalizable object detector. Precision and recall were utilized as a validation and test set metric, resulting in a high mean average precision (mAP) metric for an accurate droplet detector. To examine model limitations, the predictions were compared to ground truth labels, illustrating that the YOLO predictions closely matched with the droplet and cell labels. Furthermore, it is demonstrated that droplet enumeration from the YOLOv5 model is consistent with hand counted ratios and the Poisson distribution, confirming that the platform can be used in real-time experiments for cell encapsulation optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉默越彬完成签到,获得积分10
刚刚
Nicho发布了新的文献求助10
1秒前
1秒前
蓦然回首完成签到,获得积分10
1秒前
1秒前
Owen应助七大洋的风采纳,获得10
2秒前
2秒前
科研通AI5应助一平采纳,获得80
2秒前
wxwang完成签到,获得积分10
2秒前
廖同学完成签到 ,获得积分10
3秒前
orixero应助李家乐采纳,获得10
3秒前
4秒前
4秒前
lujiajia发布了新的文献求助10
4秒前
5秒前
啊啊啊啊啊叶完成签到 ,获得积分10
5秒前
LLL完成签到 ,获得积分10
5秒前
sanyecao383完成签到,获得积分10
5秒前
Draeck完成签到,获得积分10
6秒前
cruise完成签到,获得积分10
6秒前
在水一方应助念念采纳,获得10
6秒前
6秒前
7秒前
万能图书馆应助动听导师采纳,获得10
7秒前
MADKAI发布了新的文献求助10
7秒前
科研通AI5应助蒋念寒采纳,获得10
8秒前
ric发布了新的文献求助200
8秒前
Li完成签到,获得积分10
8秒前
8秒前
min17完成签到,获得积分10
9秒前
9秒前
小黄发布了新的文献求助10
9秒前
Lucas应助dldddz采纳,获得10
10秒前
10秒前
柠木发布了新的文献求助10
10秒前
郭泓嵩完成签到,获得积分10
11秒前
自由刺猬发布了新的文献求助20
11秒前
weddcf发布了新的文献求助10
11秒前
江月年完成签到 ,获得积分10
11秒前
ZHANG_Kun完成签到 ,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678