清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep learning detector for high precision monitoring of cell encapsulation statistics in microfluidic droplets

探测器 微流控 封装(网络) 计算机科学 色谱法 化学 纳米技术 材料科学 计算机安全 电信
作者
Karl Gardner,Md Mezbah Uddin,Linh M. Tran,Thanh Quang Pham,Siva A. Vanapalli,Wei Li
出处
期刊:Lab on a Chip [The Royal Society of Chemistry]
卷期号:22 (21): 4067-4080 被引量:35
标识
DOI:10.1039/d2lc00462c
摘要

Encapsulation of cells inside microfluidic droplets is central to several applications involving cellular analysis. Although, theoretically the encapsulation statistics are expected to follow a Poisson distribution, experimentally this may not be achieved due to lack of full control of the experimental variables and conditions. Therefore, there is a need for automatic detection of droplets and cell count enumeration within droplets so a process control feedback to adjust experimental conditions can be implemented. In this study, we use a deep learning object detector called You Only Look Once (YOLO), an influential class of object detectors with several benefits over traditional methods. This paper investigates the application of both YOLOv3 and YOLOv5 object detectors in the development of an automated droplet and cell detector. Experimental data was obtained from a microfluidic flow focusing device with a dispersed phase of cancer cells. The microfluidic device contained an expansion chamber downstream of the droplet generator, allowing for visualization and recording of cell-encapsulated droplet images. In the procedure, a droplet bounding box is predicted, then cropped from the original image for the individual cells to be detected through a separate model for further examination. The system includes a production set for additional performance analysis with Poisson statistics while providing an experimental workflow with both droplet and cell models. The training set is collected and preprocessed before labeling and applying image augmentations, allowing for a generalizable object detector. Precision and recall were utilized as a validation and test set metric, resulting in a high mean average precision (mAP) metric for an accurate droplet detector. To examine model limitations, the predictions were compared to ground truth labels, illustrating that the YOLO predictions closely matched with the droplet and cell labels. Furthermore, it is demonstrated that droplet enumeration from the YOLOv5 model is consistent with hand counted ratios and the Poisson distribution, confirming that the platform can be used in real-time experiments for cell encapsulation optimization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
种下梧桐树完成签到 ,获得积分10
2秒前
47秒前
热情依白发布了新的文献求助30
52秒前
woxinyouyou完成签到,获得积分0
1分钟前
房天川完成签到 ,获得积分10
1分钟前
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
LINDENG2004完成签到 ,获得积分10
1分钟前
大喜喜发布了新的文献求助50
2分钟前
King16完成签到,获得积分10
3分钟前
碗碗豆喵完成签到 ,获得积分10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
王梦秋完成签到 ,获得积分10
4分钟前
热情依白完成签到 ,获得积分10
4分钟前
yindi1991完成签到 ,获得积分10
4分钟前
4分钟前
欢呼亦绿完成签到,获得积分10
4分钟前
齐阳春完成签到 ,获得积分10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
5分钟前
宇文雨文完成签到 ,获得积分10
6分钟前
Lucas应助didididm采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
萝卜猪完成签到,获得积分10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
没时间解释了完成签到 ,获得积分10
9分钟前
老迟到的友桃完成签到 ,获得积分10
10分钟前
cdercder完成签到,获得积分0
10分钟前
xiaowangwang完成签到 ,获得积分10
10分钟前
小二郎应助科研通管家采纳,获得10
11分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
shhoing应助科研通管家采纳,获得10
11分钟前
zyjsunye完成签到 ,获得积分10
11分钟前
聪慧的怀绿完成签到,获得积分10
12分钟前
13分钟前
HHM发布了新的文献求助10
13分钟前
13分钟前
13分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561606
求助须知:如何正确求助?哪些是违规求助? 4646674
关于积分的说明 14678855
捐赠科研通 4588030
什么是DOI,文献DOI怎么找? 2517275
邀请新用户注册赠送积分活动 1490581
关于科研通互助平台的介绍 1461620