Deep learning detector for high precision monitoring of cell encapsulation statistics in microfluidic droplets

探测器 微流控 封装(网络) 计算机科学 色谱法 化学 纳米技术 材料科学 计算机安全 电信
作者
Karl Gardner,Md Mezbah Uddin,Linh M. Tran,Thanh Quang Pham,Siva A. Vanapalli,Wei Li
出处
期刊:Lab on a Chip [The Royal Society of Chemistry]
卷期号:22 (21): 4067-4080 被引量:35
标识
DOI:10.1039/d2lc00462c
摘要

Encapsulation of cells inside microfluidic droplets is central to several applications involving cellular analysis. Although, theoretically the encapsulation statistics are expected to follow a Poisson distribution, experimentally this may not be achieved due to lack of full control of the experimental variables and conditions. Therefore, there is a need for automatic detection of droplets and cell count enumeration within droplets so a process control feedback to adjust experimental conditions can be implemented. In this study, we use a deep learning object detector called You Only Look Once (YOLO), an influential class of object detectors with several benefits over traditional methods. This paper investigates the application of both YOLOv3 and YOLOv5 object detectors in the development of an automated droplet and cell detector. Experimental data was obtained from a microfluidic flow focusing device with a dispersed phase of cancer cells. The microfluidic device contained an expansion chamber downstream of the droplet generator, allowing for visualization and recording of cell-encapsulated droplet images. In the procedure, a droplet bounding box is predicted, then cropped from the original image for the individual cells to be detected through a separate model for further examination. The system includes a production set for additional performance analysis with Poisson statistics while providing an experimental workflow with both droplet and cell models. The training set is collected and preprocessed before labeling and applying image augmentations, allowing for a generalizable object detector. Precision and recall were utilized as a validation and test set metric, resulting in a high mean average precision (mAP) metric for an accurate droplet detector. To examine model limitations, the predictions were compared to ground truth labels, illustrating that the YOLO predictions closely matched with the droplet and cell labels. Furthermore, it is demonstrated that droplet enumeration from the YOLOv5 model is consistent with hand counted ratios and the Poisson distribution, confirming that the platform can be used in real-time experiments for cell encapsulation optimization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助chai采纳,获得10
刚刚
1秒前
阿达完成签到,获得积分10
1秒前
1秒前
Jasper应助张云清采纳,获得30
2秒前
2秒前
3秒前
科研通AI6应助无情颖采纳,获得10
4秒前
DG发布了新的文献求助10
4秒前
灼灼发布了新的文献求助10
5秒前
yuyu发布了新的文献求助10
5秒前
斯文败类应助LGX采纳,获得10
5秒前
桂桂完成签到,获得积分10
5秒前
6秒前
无花果应助典雅的俊驰采纳,获得10
6秒前
7秒前
7秒前
烟花应助SCurry3rain采纳,获得30
7秒前
完美世界应助闪闪的飞雪采纳,获得10
7秒前
yangsouth发布了新的文献求助10
8秒前
研友_85YNe8完成签到,获得积分10
8秒前
将夕发布了新的文献求助10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
yyy完成签到 ,获得积分10
11秒前
DG完成签到,获得积分10
11秒前
chai发布了新的文献求助10
13秒前
13秒前
13秒前
yt发布了新的文献求助10
14秒前
五1232发布了新的文献求助10
14秒前
坦率的曲奇完成签到,获得积分10
14秒前
16秒前
17秒前
NOT发布了新的文献求助10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5656742
求助须知:如何正确求助?哪些是违规求助? 4805800
关于积分的说明 15077356
捐赠科研通 4814948
什么是DOI,文献DOI怎么找? 2576219
邀请新用户注册赠送积分活动 1531465
关于科研通互助平台的介绍 1490025