Deep learning detector for high precision monitoring of cell encapsulation statistics in microfluidic droplets

探测器 微流控 封装(网络) 计算机科学 色谱法 化学 纳米技术 材料科学 计算机安全 电信
作者
Karl Gardner,Md Mezbah Uddin,Linh M. Tran,Thanh Quang Pham,Siva A. Vanapalli,Wei Li
出处
期刊:Lab on a Chip [The Royal Society of Chemistry]
卷期号:22 (21): 4067-4080 被引量:35
标识
DOI:10.1039/d2lc00462c
摘要

Encapsulation of cells inside microfluidic droplets is central to several applications involving cellular analysis. Although, theoretically the encapsulation statistics are expected to follow a Poisson distribution, experimentally this may not be achieved due to lack of full control of the experimental variables and conditions. Therefore, there is a need for automatic detection of droplets and cell count enumeration within droplets so a process control feedback to adjust experimental conditions can be implemented. In this study, we use a deep learning object detector called You Only Look Once (YOLO), an influential class of object detectors with several benefits over traditional methods. This paper investigates the application of both YOLOv3 and YOLOv5 object detectors in the development of an automated droplet and cell detector. Experimental data was obtained from a microfluidic flow focusing device with a dispersed phase of cancer cells. The microfluidic device contained an expansion chamber downstream of the droplet generator, allowing for visualization and recording of cell-encapsulated droplet images. In the procedure, a droplet bounding box is predicted, then cropped from the original image for the individual cells to be detected through a separate model for further examination. The system includes a production set for additional performance analysis with Poisson statistics while providing an experimental workflow with both droplet and cell models. The training set is collected and preprocessed before labeling and applying image augmentations, allowing for a generalizable object detector. Precision and recall were utilized as a validation and test set metric, resulting in a high mean average precision (mAP) metric for an accurate droplet detector. To examine model limitations, the predictions were compared to ground truth labels, illustrating that the YOLO predictions closely matched with the droplet and cell labels. Furthermore, it is demonstrated that droplet enumeration from the YOLOv5 model is consistent with hand counted ratios and the Poisson distribution, confirming that the platform can be used in real-time experiments for cell encapsulation optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7907发布了新的文献求助10
刚刚
刚刚
styz13发布了新的文献求助30
刚刚
1秒前
atg完成签到,获得积分10
2秒前
FashionBoy应助01采纳,获得10
2秒前
嘿嘿完成签到,获得积分10
4秒前
ni完成签到,获得积分20
4秒前
飞翔完成签到,获得积分10
5秒前
喔喔发布了新的文献求助10
5秒前
6秒前
whatever发布了新的文献求助10
6秒前
张宝发布了新的文献求助10
6秒前
在水一方应助shen采纳,获得10
7秒前
7秒前
大气的苠发布了新的文献求助10
8秒前
water完成签到,获得积分10
9秒前
灵珠学医完成签到 ,获得积分10
9秒前
10秒前
清爽的凌波完成签到,获得积分10
10秒前
在水一方应助星睿采纳,获得10
11秒前
luoluo发布了新的文献求助10
11秒前
华仔应助认真连虎采纳,获得10
13秒前
13秒前
14秒前
xiaozhang发布了新的文献求助10
14秒前
14秒前
安详的夜春完成签到 ,获得积分10
14秒前
15秒前
15秒前
搜集达人应助hongyeZhang采纳,获得10
16秒前
shen发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
今天你还好吗完成签到,获得积分10
17秒前
电四拟完成签到 ,获得积分10
17秒前
机智不乐完成签到 ,获得积分10
17秒前
EliGolden发布了新的文献求助10
18秒前
香蕉觅云应助科研通管家采纳,获得30
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406906
求助须知:如何正确求助?哪些是违规求助? 4524590
关于积分的说明 14099375
捐赠科研通 4438444
什么是DOI,文献DOI怎么找? 2436281
邀请新用户注册赠送积分活动 1428252
关于科研通互助平台的介绍 1406358