清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep learning detector for high precision monitoring of cell encapsulation statistics in microfluidic droplets

探测器 微流控 封装(网络) 计算机科学 色谱法 化学 纳米技术 材料科学 计算机安全 电信
作者
Karl Gardner,Md Mezbah Uddin,Linh M. Tran,Thanh Quang Pham,Siva A. Vanapalli,Wei Li
出处
期刊:Lab on a Chip [The Royal Society of Chemistry]
卷期号:22 (21): 4067-4080 被引量:35
标识
DOI:10.1039/d2lc00462c
摘要

Encapsulation of cells inside microfluidic droplets is central to several applications involving cellular analysis. Although, theoretically the encapsulation statistics are expected to follow a Poisson distribution, experimentally this may not be achieved due to lack of full control of the experimental variables and conditions. Therefore, there is a need for automatic detection of droplets and cell count enumeration within droplets so a process control feedback to adjust experimental conditions can be implemented. In this study, we use a deep learning object detector called You Only Look Once (YOLO), an influential class of object detectors with several benefits over traditional methods. This paper investigates the application of both YOLOv3 and YOLOv5 object detectors in the development of an automated droplet and cell detector. Experimental data was obtained from a microfluidic flow focusing device with a dispersed phase of cancer cells. The microfluidic device contained an expansion chamber downstream of the droplet generator, allowing for visualization and recording of cell-encapsulated droplet images. In the procedure, a droplet bounding box is predicted, then cropped from the original image for the individual cells to be detected through a separate model for further examination. The system includes a production set for additional performance analysis with Poisson statistics while providing an experimental workflow with both droplet and cell models. The training set is collected and preprocessed before labeling and applying image augmentations, allowing for a generalizable object detector. Precision and recall were utilized as a validation and test set metric, resulting in a high mean average precision (mAP) metric for an accurate droplet detector. To examine model limitations, the predictions were compared to ground truth labels, illustrating that the YOLO predictions closely matched with the droplet and cell labels. Furthermore, it is demonstrated that droplet enumeration from the YOLOv5 model is consistent with hand counted ratios and the Poisson distribution, confirming that the platform can be used in real-time experiments for cell encapsulation optimization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ShishanXue完成签到 ,获得积分10
6秒前
TOUHOUU完成签到 ,获得积分10
21秒前
叁月二完成签到 ,获得积分10
23秒前
34秒前
sidashu发布了新的文献求助10
42秒前
浮游应助sidashu采纳,获得10
53秒前
科目三应助Pengzhuhuai采纳,获得10
1分钟前
w0304hf完成签到,获得积分10
1分钟前
漫天飞雪_寒江孤影完成签到 ,获得积分10
1分钟前
娟儿完成签到 ,获得积分10
1分钟前
李玉兰完成签到 ,获得积分10
1分钟前
慧慧34完成签到 ,获得积分10
1分钟前
舒心无剑完成签到 ,获得积分10
1分钟前
2分钟前
双眼皮跳蚤完成签到,获得积分0
2分钟前
奋斗的妙海完成签到 ,获得积分0
2分钟前
zhuosht完成签到 ,获得积分10
2分钟前
杨111完成签到 ,获得积分10
2分钟前
2分钟前
研友_851KE8发布了新的文献求助10
2分钟前
herpes完成签到 ,获得积分0
2分钟前
quantumdot完成签到,获得积分10
2分钟前
quantumdot发布了新的文献求助20
2分钟前
刘丰完成签到 ,获得积分10
2分钟前
peiter完成签到 ,获得积分10
2分钟前
苏子墨完成签到,获得积分10
3分钟前
科研通AI6应助quantumdot采纳,获得10
3分钟前
研友_VZG7GZ应助CC采纳,获得50
3分钟前
3分钟前
CC发布了新的文献求助50
3分钟前
CadoreK完成签到 ,获得积分10
3分钟前
afterglow完成签到 ,获得积分10
3分钟前
王小茜关注了科研通微信公众号
4分钟前
SimonShaw完成签到,获得积分10
4分钟前
陶醉的羞花完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
王小茜发布了新的文献求助30
4分钟前
4分钟前
氟锑酸完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5510044
求助须知:如何正确求助?哪些是违规求助? 4604686
关于积分的说明 14490048
捐赠科研通 4539706
什么是DOI,文献DOI怎么找? 2487658
邀请新用户注册赠送积分活动 1469937
关于科研通互助平台的介绍 1442339