已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning detector for high precision monitoring of cell encapsulation statistics in microfluidic droplets

探测器 微流控 封装(网络) 计算机科学 色谱法 化学 纳米技术 材料科学 计算机安全 电信
作者
Karl Gardner,Md Mezbah Uddin,Linh M. Tran,Thanh Quang Pham,Siva A. Vanapalli,Wei Li
出处
期刊:Lab on a Chip [The Royal Society of Chemistry]
卷期号:22 (21): 4067-4080 被引量:35
标识
DOI:10.1039/d2lc00462c
摘要

Encapsulation of cells inside microfluidic droplets is central to several applications involving cellular analysis. Although, theoretically the encapsulation statistics are expected to follow a Poisson distribution, experimentally this may not be achieved due to lack of full control of the experimental variables and conditions. Therefore, there is a need for automatic detection of droplets and cell count enumeration within droplets so a process control feedback to adjust experimental conditions can be implemented. In this study, we use a deep learning object detector called You Only Look Once (YOLO), an influential class of object detectors with several benefits over traditional methods. This paper investigates the application of both YOLOv3 and YOLOv5 object detectors in the development of an automated droplet and cell detector. Experimental data was obtained from a microfluidic flow focusing device with a dispersed phase of cancer cells. The microfluidic device contained an expansion chamber downstream of the droplet generator, allowing for visualization and recording of cell-encapsulated droplet images. In the procedure, a droplet bounding box is predicted, then cropped from the original image for the individual cells to be detected through a separate model for further examination. The system includes a production set for additional performance analysis with Poisson statistics while providing an experimental workflow with both droplet and cell models. The training set is collected and preprocessed before labeling and applying image augmentations, allowing for a generalizable object detector. Precision and recall were utilized as a validation and test set metric, resulting in a high mean average precision (mAP) metric for an accurate droplet detector. To examine model limitations, the predictions were compared to ground truth labels, illustrating that the YOLO predictions closely matched with the droplet and cell labels. Furthermore, it is demonstrated that droplet enumeration from the YOLOv5 model is consistent with hand counted ratios and the Poisson distribution, confirming that the platform can be used in real-time experiments for cell encapsulation optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清欢发布了新的文献求助10
刚刚
1秒前
雨琴发布了新的文献求助10
2秒前
纭声完成签到 ,获得积分10
2秒前
小蘑菇应助生动以云采纳,获得10
2秒前
2秒前
3秒前
3秒前
科研通AI2S应助LeslieWK采纳,获得10
4秒前
deity完成签到,获得积分10
4秒前
薄荷之夏发布了新的文献求助10
6秒前
6秒前
8秒前
浮游应助ZWX采纳,获得10
8秒前
8秒前
软软完成签到,获得积分10
8秒前
9秒前
hjh关注了科研通微信公众号
10秒前
英吉利25发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
13秒前
14秒前
mm完成签到 ,获得积分10
14秒前
hoope完成签到 ,获得积分10
14秒前
彭于晏应助ChenYX采纳,获得10
14秒前
11发布了新的文献求助10
15秒前
VDC应助檬小洋采纳,获得30
16秒前
善学以致用应助Or采纳,获得10
16秒前
ll发布了新的文献求助10
16秒前
隐形的雁完成签到,获得积分10
16秒前
彭于晏应助涨涨涨采纳,获得10
16秒前
李健的小迷弟应助Jiayi采纳,获得10
17秒前
18秒前
萧幻枫发布了新的文献求助10
19秒前
19秒前
19秒前
乌托邦的兔纸完成签到 ,获得积分10
20秒前
20秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443330
求助须知:如何正确求助?哪些是违规求助? 4553229
关于积分的说明 14241357
捐赠科研通 4474851
什么是DOI,文献DOI怎么找? 2452158
邀请新用户注册赠送积分活动 1443137
关于科研通互助平台的介绍 1418742