Deep learning detector for high precision monitoring of cell encapsulation statistics in microfluidic droplets

探测器 微流控 封装(网络) 计算机科学 色谱法 化学 纳米技术 材料科学 计算机安全 电信
作者
Karl Gardner,Md Mezbah Uddin,Linh M. Tran,Thanh Quang Pham,Siva A. Vanapalli,Wei Li
出处
期刊:Lab on a Chip [Royal Society of Chemistry]
卷期号:22 (21): 4067-4080 被引量:35
标识
DOI:10.1039/d2lc00462c
摘要

Encapsulation of cells inside microfluidic droplets is central to several applications involving cellular analysis. Although, theoretically the encapsulation statistics are expected to follow a Poisson distribution, experimentally this may not be achieved due to lack of full control of the experimental variables and conditions. Therefore, there is a need for automatic detection of droplets and cell count enumeration within droplets so a process control feedback to adjust experimental conditions can be implemented. In this study, we use a deep learning object detector called You Only Look Once (YOLO), an influential class of object detectors with several benefits over traditional methods. This paper investigates the application of both YOLOv3 and YOLOv5 object detectors in the development of an automated droplet and cell detector. Experimental data was obtained from a microfluidic flow focusing device with a dispersed phase of cancer cells. The microfluidic device contained an expansion chamber downstream of the droplet generator, allowing for visualization and recording of cell-encapsulated droplet images. In the procedure, a droplet bounding box is predicted, then cropped from the original image for the individual cells to be detected through a separate model for further examination. The system includes a production set for additional performance analysis with Poisson statistics while providing an experimental workflow with both droplet and cell models. The training set is collected and preprocessed before labeling and applying image augmentations, allowing for a generalizable object detector. Precision and recall were utilized as a validation and test set metric, resulting in a high mean average precision (mAP) metric for an accurate droplet detector. To examine model limitations, the predictions were compared to ground truth labels, illustrating that the YOLO predictions closely matched with the droplet and cell labels. Furthermore, it is demonstrated that droplet enumeration from the YOLOv5 model is consistent with hand counted ratios and the Poisson distribution, confirming that the platform can be used in real-time experiments for cell encapsulation optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dean发布了新的文献求助10
刚刚
qinsi15发布了新的文献求助10
刚刚
慕青应助arong采纳,获得10
刚刚
1秒前
牛马发布了新的文献求助10
1秒前
2秒前
恰同学少年完成签到,获得积分10
2秒前
mmj发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
Hzyyyyyyyyy发布了新的文献求助10
4秒前
浮游应助啦啦啦啦采纳,获得10
4秒前
星辰大海应助啦啦啦啦采纳,获得10
4秒前
4秒前
5秒前
6秒前
7秒前
medmh发布了新的文献求助10
7秒前
科研通AI5应助罗斯采纳,获得10
7秒前
彭于晏应助繁荣的寻芹采纳,获得10
7秒前
puchang007发布了新的文献求助10
8秒前
乐研客发布了新的文献求助10
8秒前
萌酱完成签到,获得积分10
9秒前
Francisco2333发布了新的文献求助10
9秒前
DG发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
12秒前
12秒前
yaya完成签到,获得积分10
13秒前
13秒前
李爱国应助活力的惜萱采纳,获得10
13秒前
浮游应助枵蕾采纳,获得10
13秒前
浮游应助枵蕾采纳,获得10
13秒前
香蕉觅云应助枵蕾采纳,获得10
13秒前
549发布了新的文献求助10
14秒前
田田完成签到,获得积分10
14秒前
爆米花应助学术瞎子采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
Wolbachia-mediated fitness enhancement and reproductive manipulation in the South American tomato pinworm, Tuta absoluta 400
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
MARCH'S ADVANCED ORGANIC CHEMISTRY REACTIONS, MECHANISMS, AND STRUCTURE 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5102029
求助须知:如何正确求助?哪些是违规求助? 4313278
关于积分的说明 13439364
捐赠科研通 4141198
什么是DOI,文献DOI怎么找? 2269056
邀请新用户注册赠送积分活动 1271754
关于科研通互助平台的介绍 1208159