Infrared and visible image fusion via mutual information maximization

图像融合 人工智能 相互信息 计算机科学 融合 模式识别(心理学) 图像(数学) 图像质量 最大化 公制(单位) 相似性(几何) 忠诚 代表(政治) 计算机视觉 数学 数学优化 哲学 政治学 经济 政治 法学 电信 语言学 运营管理
作者
Aiqing Fang,Junsheng Wu,Ying Li,Ruimin Qiao
出处
期刊:Computer Vision and Image Understanding [Elsevier BV]
卷期号:231: 103683-103683 被引量:3
标识
DOI:10.1016/j.cviu.2023.103683
摘要

Traditional image fusion methods based on deep learning generally measure the similarity between the fusion results and the source images, ignoring the harmful information of source images. This paper presents a simple-yet-effective self-supervised image fusion optimization mechanism via directly maximizing the mutual information between the fused image and image samples, including positive and negative samples. The fusion optimization of positive samples has three steps, including visual fidelity item, quality perception item, and semantic perception item loss functions, aiming to reduce the distance between the fused representation and the real image quality. The fusion optimization of negative samples aims to enlarge the distance between the fusion results and the degraded image. Following InfoNCE, our framework is optimized via a surrogate contrastive loss, where the positive and negative selection underpins the real quality and visual fidelity information of fusion representation learning. Therefore, the stumbling blocks of deep learning in image fusion, i.e., similarity fusion optimization problems, are significantly mitigated. Extensive experiments demonstrate that fusion results neatly outperforms the state-of-the-art fusion optimization mechanisms in most metrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Takakura发布了新的文献求助30
1秒前
2秒前
Orange应助霹雳侠采纳,获得10
2秒前
稳重的小杨完成签到,获得积分10
2秒前
3秒前
田様应助岳粤采纳,获得10
3秒前
天天快乐应助xxx采纳,获得10
3秒前
852应助雷阿呆采纳,获得10
4秒前
wy.he应助ljc采纳,获得10
4秒前
lkk发布了新的文献求助10
5秒前
lllyyysss完成签到,获得积分20
5秒前
FashionBoy应助似君采纳,获得10
5秒前
6秒前
领导范儿应助苹果秋灵采纳,获得10
6秒前
乖张完成签到,获得积分10
6秒前
华仔应助细心的傥采纳,获得10
7秒前
8秒前
9秒前
科勒基侈发布了新的文献求助10
9秒前
9秒前
xxr1111完成签到,获得积分10
10秒前
11秒前
桃子完成签到,获得积分10
11秒前
SciGPT应助lkk采纳,获得10
11秒前
12秒前
纳斯达克发布了新的文献求助10
12秒前
13秒前
fw97发布了新的文献求助10
13秒前
13秒前
执着的导师完成签到,获得积分10
14秒前
慕青应助健忘的不悔采纳,获得10
15秒前
15秒前
16秒前
宝玉完成签到 ,获得积分10
16秒前
16秒前
玄音完成签到,获得积分10
17秒前
LucyMartinez发布了新的文献求助10
17秒前
orixero应助向上向上向上采纳,获得10
17秒前
17秒前
iNk应助innocence@x采纳,获得20
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
《电路与模拟电子电路PSpice仿真分析及设计》 500
《电子电路原理》 500
《数字电子技术》 500
半导体器件物理 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011633
求助须知:如何正确求助?哪些是违规求助? 3551418
关于积分的说明 11308628
捐赠科研通 3285620
什么是DOI,文献DOI怎么找? 1811122
邀请新用户注册赠送积分活动 886781
科研通“疑难数据库(出版商)”最低求助积分说明 811653