Implementation of a Mathematical Model for the Prediction of the Future Condition Rating for Bridge Components

桥(图论) 组分(热力学) 数学模型 桥梁维护 工程类 可靠性工程 计算机科学 运筹学 统计 结构工程 数学 医学 物理 甲板 内科学 热力学
作者
Sameera Tharanga Jayathilaka,Brent Phares,Zhengyu Liu
出处
期刊:Transportation Research Record [SAGE]
卷期号:2677 (3): 1700-1714 被引量:4
标识
DOI:10.1177/03611981221127003
摘要

Bridges are continuously exposed to environmental changes and dynamic loading effects caused by moving loads. As a result, bridge deterioration is a critical problem in the U.S.A. The National Bridge Inventory (NBI) database contains historical bridge condition information for bridges in the U.S.A. and currently it is the best available database for describing the historical condition of bridges in the U.S.A. The objective of this paper is to develop a mathematical model that can be used to predict the future condition ratings of each bridge component and, more specifically, to estimate the probability of each bridge component being at any condition rating at any future year. Two different types of future condition rating prediction models, namely the current practice model (CPM) and the deterioration prediction model (DPM), were developed. The CPM is capable of simulating the effects of historical maintenance activities when predicting the future condition rating probabilities, whereas the DPM does not consider the effects of historical maintenance activities when predicting the future condition rating probabilities. Both models were illustrated and validated using most current NBI data. The performance of both models was evaluated on hundreds of bridges in the states of Iowa and Wisconsin. The results indicated that the CPMs tend to converge to condition rating 6 within 15 years, whereas the DPMs tend to converge to condition rating 4 with 15 years. This suggests that conducting current maintenance activities helps to keep the nation’s bridges in at least “satisfactory condition.” However, a lack of performing any maintenance could lead to bridges being structurally deficient within 15 years.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助科研通管家采纳,获得10
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
Orange应助科研通管家采纳,获得10
1秒前
小马甲应助mimi采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
雪白问兰应助科研通管家采纳,获得30
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
zzzzzz应助科研通管家采纳,获得20
1秒前
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
sidegate应助科研通管家采纳,获得10
1秒前
prosperp应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
li完成签到,获得积分10
1秒前
1秒前
mlml完成签到,获得积分10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
Zn应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
Zn应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
jimmy发布了新的文献求助10
2秒前
华仔应助hhh采纳,获得10
3秒前
hug完成签到,获得积分10
3秒前
科研通AI5应助cxwong采纳,获得10
3秒前
3秒前
沉敛一生完成签到,获得积分10
3秒前
hhy发布了新的文献求助10
3秒前
starry发布了新的文献求助10
4秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672