Tackling the subsampling problem to infer collective properties from limited data

计算机科学 推论 分数(化学) 数据科学 透视图(图形) 比例(比率) 人工智能 复杂系统 机器学习 理论计算机科学 地理 地图学 有机化学 化学
作者
Anna Levina,Viola Priesemann,Johannes Zierenberg
出处
期刊:Nature Reviews Physics [Nature Portfolio]
卷期号:4 (12): 770-784 被引量:20
标识
DOI:10.1038/s42254-022-00532-5
摘要

Despite the development of large-scale data-acquisition techniques, experimental observations of complex systems are often limited to a tiny fraction of the system under study. This spatial subsampling is particularly severe in neuroscience, in which only a tiny fraction of millions or even billions of neurons can be individually recorded. Spatial subsampling may lead to substantial systematic biases when inferring the collective properties of the entire system naively from a subsampled part. To overcome such biases, powerful mathematical tools have been developed. In this Perspective, we give an overview of some issues arising from subsampling and review approaches developed in recent years to tackle the subsampling problem. These approaches enable one to correctly assess phenomena such as graph structures, collective dynamics of animals, neural network activity or the spread of disease from observing only a tiny fraction of the system. However, existing approaches are still far from having solved the subsampling problem in general, and we also outline what we believe are the main open challenges. Solving these challenges alongside the development of large-scale recording techniques will enable further fundamental insights into the workings of complex and living systems. For many complex or living systems, it is impossible to individually sample all their units, but subsampling can heavily bias the inference about their collective properties. This Perspective presents the subsampling problem and reviews recent developments to overcome this fundamental limitation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风中小懒虫完成签到,获得积分10
1秒前
英俊的铭应助章章采纳,获得10
1秒前
shijin135完成签到,获得积分10
4秒前
尼尔森完成签到,获得积分10
4秒前
7秒前
8秒前
8秒前
allegiance完成签到,获得积分10
8秒前
迷人的高烽完成签到,获得积分10
9秒前
SophiaHH发布了新的文献求助30
10秒前
橘子发布了新的文献求助10
12秒前
13秒前
13秒前
落寞振家发布了新的文献求助10
16秒前
19秒前
yar应助舍曲林采纳,获得10
20秒前
文瑄给文瑄的求助进行了留言
21秒前
russing完成签到 ,获得积分10
21秒前
22秒前
勤劳寒烟完成签到,获得积分10
22秒前
cxd发布了新的文献求助10
26秒前
yar应助舍曲林采纳,获得10
27秒前
28秒前
海带发布了新的文献求助10
28秒前
酷炫的毛巾应助西子阳采纳,获得10
28秒前
斯文的兔子关注了科研通微信公众号
28秒前
拟好啊完成签到,获得积分20
29秒前
852应助魔幻安筠采纳,获得10
31秒前
Otorhino完成签到 ,获得积分10
32秒前
重要梦之发布了新的文献求助10
33秒前
拟好啊发布了新的文献求助10
33秒前
甘乐完成签到,获得积分10
34秒前
34秒前
2以李完成签到,获得积分10
36秒前
yar应助舍曲林采纳,获得10
36秒前
congjia完成签到,获得积分10
37秒前
oh应助海带采纳,获得10
38秒前
张子怡完成签到 ,获得积分10
39秒前
落寞振家完成签到,获得积分20
39秒前
qyxu发布了新的文献求助50
39秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999546
求助须知:如何正确求助?哪些是违规求助? 3539008
关于积分的说明 11275620
捐赠科研通 3277833
什么是DOI,文献DOI怎么找? 1807725
邀请新用户注册赠送积分活动 884127
科研通“疑难数据库(出版商)”最低求助积分说明 810142