超级电容器
聚吡咯
材料科学
聚苯胺
自愈水凝胶
导电聚合物
乙烯醇
化学工程
循环伏安法
电解质
介电谱
电极
傅里叶变换红外光谱
聚合物
电化学
高分子化学
复合材料
化学
聚合
物理化学
工程类
作者
Khadija Hasan,Shahid Bashir,S. Ramesh,K. Ramesh,Kashif Kamran,Javed Iqbal,H. Algarni,Abdullah G. Al‐Sehemi,S. Wageh,M. Pershaanaa,Fathiah Kamarulazam
出处
期刊:Polymers
[MDPI AG]
日期:2022-11-07
卷期号:14 (21): 4784-4784
被引量:5
标识
DOI:10.3390/polym14214784
摘要
The major components of supercapacitor are electrodes and electrolytes which are fabricated using various materials and methods. Hydrogel is one such material that is used in supercapacitors as electrodes and electrolytes or both. Hydrogels are usually described as a soft and porous network of polymer materials that can swell in water because of the hydrophilic nature of its polymer chains, compriseng a 3D structure. It is well known that supercapacitors possess high-power density but low energy density. For enhancing energy density of these electrochemical cells and a boost in its electrochemical performance and specific capacity, binder free conducting polymer hydrogel electrodes have gained immense attention, especially polyaniline (PANI) and polypyrrole (PPy). Therefore, in this work, chemically crosslinked PVA/Agar hydrogel electrolytes have been prepared and employed. Agar has been added in PVA since it is environmentally friendly, biodegradable, and cost-effective natural polymer. Subsequently, the binder free polyaniline/polypyrrole electrodes were grown on the PVA/Agar hydrogel electrolytes to fabricate all-in-one flexible hydrogels. The synthesized hydrogels were characterized using X-ray diffraction (XRD) analysis, Fourier transform infrared (FTIR) analysis, Field emission scanning electron microscope (FESEM) and mechanical studies. Then, the all-in-one flexible supercapacitors were fabricated using the hydrogels. The electrochemical studies such cyclic voltammetry (CV), galvanic charge discharge (GCD), and electrochemical impedance spectroscopy (EIS) studies. The fabricated all-in-one lamination free supercapacitors showed promising results and by comparing all four samples, PAP2 where 5 mL of PVA was used in combination with 3 mL of Agar and 5 mL of PANI and PPy each, exhibited the highest areal capacitance of 750.13 mF/cm2, energy density of 103.02 μWh/cm2, and 497.22 μW/cm2 power density. The cyclic stability study revealed the 149% capacity retention after 15,000 cycles.
科研通智能强力驱动
Strongly Powered by AbleSci AI