Link prediction based on the naive Bayes with high-order clustering structure of node

聚类分析 计算机科学 节点(物理) 数据挖掘 虚假关系 朴素贝叶斯分类器 相似性(几何) 链接(几何体) 贝叶斯定理 群落结构 k-最近邻算法 复杂网络 人工智能 机器学习 数学 贝叶斯概率 支持向量机 工程类 计算机网络 图像(数学) 组合数学 万维网 结构工程
作者
Xiaoqiang Li
标识
DOI:10.1117/12.2639914
摘要

Link prediction, a significant branch of complex networks, has attracted the attention of a growing number of scholars. It is an important tool in data mining. It is used to predict possible future links in the network or links that have not been observed yet. It can also be used to identify spurious links. The Local Naïve Bayes Model accurately distinguishes the contribution of different common neighbor nodes to the formation of the target link, but it only considers the contribution of common neighbors. A large number of networks have higher-order characteristics, and higher-order structures capture as much information about the network. In the work, we proposed a novel method of link prediction based on Naive Bayes with High-Order clustering structure (NBHO) of node. NBHO not only overcomes the shortcomings of the co-neighbor (common neighbor) similarity index that each co-neighbor of two nodes contributes equally to the likelihood of the connection, but also makes use of a higher order clustering structure. High-order structure plays an important role in the evolution of the network. Compared with the traditional method, this framework can provide more accurate predictions. Obviously there is a conclusion that the higher order structure significantly improves the accuracy of the predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Orange应助可爱问寒采纳,获得10
刚刚
悦雨完成签到,获得积分10
刚刚
英姑应助周em12_采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
追寻宛海完成签到 ,获得积分20
1秒前
1秒前
2秒前
sh131完成签到,获得积分10
2秒前
3秒前
ruochenzu发布了新的文献求助10
3秒前
4秒前
wanci应助笑点低绝义采纳,获得10
4秒前
撒个人发布了新的文献求助10
4秒前
米斯达发布了新的文献求助10
4秒前
4秒前
5秒前
louyang完成签到,获得积分20
5秒前
5秒前
7秒前
NIUB发布了新的文献求助10
7秒前
8秒前
嘉棯发布了新的文献求助10
9秒前
Phantom1234发布了新的文献求助10
9秒前
10秒前
10秒前
浮游应助超级的盼山采纳,获得10
10秒前
10秒前
研友_VZG7GZ应助Xinwen0322采纳,获得10
11秒前
wanwan发布了新的文献求助30
12秒前
陈打铁完成签到,获得积分10
12秒前
12秒前
12秒前
所所应助CHOU采纳,获得10
13秒前
13秒前
14秒前
SciGPT应助文献查找采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
Lucas应助等待宛白采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4605334
求助须知:如何正确求助?哪些是违规求助? 4013256
关于积分的说明 12426716
捐赠科研通 3693913
什么是DOI,文献DOI怎么找? 2036704
邀请新用户注册赠送积分活动 1069652
科研通“疑难数据库(出版商)”最低求助积分说明 953966