Spatiotemporal deep learning rainfall-runoff forecasting combined with remote sensing precipitation products in large scale basins

环境科学 降水 地表径流 均方误差 洪水预报 定量降水预报 全球降水量测量 大洪水 卫星 气象学 比例(比率) 气候学 统计 地质学 数学 地理 生态学 地图学 生物 考古 航空航天工程 工程类
作者
Shuang Zhu,Jianan Wei,Hairong Zhang,Yang Xu,Hui Qin
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:616: 128727-128727 被引量:21
标识
DOI:10.1016/j.jhydrol.2022.128727
摘要

Rainfall-runoff modeling is a complex nonlinear spatiotemporal prediction problem. However, few studies have considered the spatial characteristics of rainfall-runoff relationship in runoff forecasts based on machine learning. With the emergence of high-resolution Satellite-based Precipitation Products (SPPs) and the continuous improvement of rainfall estimation accuracy, the shortcoming of sparse spatial information for in-situ rainfall monitoring has been made up. Therefore, this study developed a large scale spatiotemporal deep learning rainfall-runoff (SDLRR) forecasting model for hydrological stations in the upper Yangtze River, and evaluated the positive impact of utilizing spatial information of three SPPs on reducing errors of runoff forecasts. The adopted remote sensing precipitation products are bias-corrected Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), Integrated Multi-satellite Retrievals for Global Precipitation Measurement data (IMERG) and Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis data (TMPA). For runoff forecasting at the Luoduxi (LDX) hydrological station, compared to regular Long Short Term Memory Network (LSTM) model, the proposed SDLRR model that utilizing IMERG data as precipitation input (IMERG_SDLRR) improved 15% in terms of Coefficient of Determination (R2) and improved 25% in terms of Root Mean Squared Error (RMSE). Compared to the best performance model among models using area-averaged precipitation as input, IMERG_SDLRR improved 5% in terms of R2 and 11% in terms of RMSE. Good performance was also acquired in the other hydrological stations. For extreme flood forecasts, IMERG_SDLRR decreased Mean Relative Error (MRE) by 0.29 and increased Qualified Rate (QR) by 53% compared to LSTM, and decreased MRE by 0.08 and increased QR by 6% compared to the best performance model using area-averaged precipitation as input. The utilization of IMERG or TMPA spatial information improved the accuracy of runoff forecasting. The accuracy evaluation of SPPs based on the results of spatiotemporal rainfall-runoff forecasts method was also demonstrated. The research is of great significance for developing runoff forecasting methods and optimizing water resources management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助呱呱采纳,获得10
刚刚
duanqianqian完成签到,获得积分10
1秒前
1秒前
2秒前
苗条砖家发布了新的文献求助10
2秒前
sansan完成签到,获得积分10
3秒前
Ding完成签到,获得积分10
3秒前
3秒前
金榕发布了新的文献求助10
5秒前
羊羊羊完成签到,获得积分10
5秒前
Orange应助极品小亮采纳,获得10
6秒前
111发布了新的文献求助10
7秒前
鹿飞松完成签到,获得积分10
7秒前
kyoko886完成签到,获得积分10
8秒前
will发布了新的文献求助10
8秒前
9秒前
白鸽应助zxvcbnm采纳,获得10
9秒前
10秒前
NexusExplorer应助小龙采纳,获得30
10秒前
hhhbbb完成签到,获得积分10
11秒前
demo1完成签到,获得积分20
11秒前
12秒前
寒冷丹翠完成签到,获得积分10
12秒前
未桑完成签到,获得积分10
13秒前
14秒前
坚强金鑫发布了新的文献求助10
15秒前
小尤菜发布了新的文献求助10
16秒前
16秒前
16秒前
16秒前
16秒前
NexusExplorer应助阿瓒采纳,获得10
17秒前
英姑应助schd采纳,获得10
18秒前
19秒前
19秒前
寒冷丹翠发布了新的文献求助10
19秒前
xiaolizi发布了新的文献求助30
21秒前
不配.应助985博士采纳,获得20
22秒前
qiu发布了新的文献求助10
22秒前
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135145
求助须知:如何正确求助?哪些是违规求助? 2786103
关于积分的说明 7775648
捐赠科研通 2441991
什么是DOI,文献DOI怎么找? 1298332
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600845