Spatiotemporal deep learning rainfall-runoff forecasting combined with remote sensing precipitation products in large scale basins

环境科学 降水 地表径流 均方误差 洪水预报 定量降水预报 全球降水量测量 大洪水 卫星 气象学 比例(比率) 气候学 统计 地质学 数学 地理 生物 地图学 工程类 航空航天工程 考古 生态学
作者
Shuang Zhu,Jianan Wei,Hairong Zhang,Yang Xu,Hui Qin
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:616: 128727-128727 被引量:31
标识
DOI:10.1016/j.jhydrol.2022.128727
摘要

Rainfall-runoff modeling is a complex nonlinear spatiotemporal prediction problem. However, few studies have considered the spatial characteristics of rainfall-runoff relationship in runoff forecasts based on machine learning. With the emergence of high-resolution Satellite-based Precipitation Products (SPPs) and the continuous improvement of rainfall estimation accuracy, the shortcoming of sparse spatial information for in-situ rainfall monitoring has been made up. Therefore, this study developed a large scale spatiotemporal deep learning rainfall-runoff (SDLRR) forecasting model for hydrological stations in the upper Yangtze River, and evaluated the positive impact of utilizing spatial information of three SPPs on reducing errors of runoff forecasts. The adopted remote sensing precipitation products are bias-corrected Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), Integrated Multi-satellite Retrievals for Global Precipitation Measurement data (IMERG) and Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis data (TMPA). For runoff forecasting at the Luoduxi (LDX) hydrological station, compared to regular Long Short Term Memory Network (LSTM) model, the proposed SDLRR model that utilizing IMERG data as precipitation input (IMERG_SDLRR) improved 15% in terms of Coefficient of Determination (R2) and improved 25% in terms of Root Mean Squared Error (RMSE). Compared to the best performance model among models using area-averaged precipitation as input, IMERG_SDLRR improved 5% in terms of R2 and 11% in terms of RMSE. Good performance was also acquired in the other hydrological stations. For extreme flood forecasts, IMERG_SDLRR decreased Mean Relative Error (MRE) by 0.29 and increased Qualified Rate (QR) by 53% compared to LSTM, and decreased MRE by 0.08 and increased QR by 6% compared to the best performance model using area-averaged precipitation as input. The utilization of IMERG or TMPA spatial information improved the accuracy of runoff forecasting. The accuracy evaluation of SPPs based on the results of spatiotemporal rainfall-runoff forecasts method was also demonstrated. The research is of great significance for developing runoff forecasting methods and optimizing water resources management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
OccupyMars2025关注了科研通微信公众号
1秒前
朱凌娇发布了新的文献求助10
1秒前
珍珠糖发布了新的文献求助10
1秒前
优雅盼海发布了新的文献求助10
1秒前
沉淀完成签到,获得积分10
2秒前
科研助手6应助岳凯采纳,获得10
2秒前
kevin完成签到 ,获得积分10
2秒前
3秒前
3秒前
CCCCPUTA完成签到,获得积分10
4秒前
Haonan完成签到,获得积分10
4秒前
Refuel完成签到,获得积分10
4秒前
终梦发布了新的文献求助20
5秒前
积极的如之完成签到,获得积分10
5秒前
5秒前
xueshufengbujue完成签到,获得积分10
5秒前
秋慕蕊发布了新的文献求助10
6秒前
ColinWine完成签到,获得积分10
6秒前
cua发布了新的文献求助20
7秒前
隐形的乐枫完成签到,获得积分10
8秒前
elidan发布了新的文献求助10
8秒前
李健应助Fantansy采纳,获得10
8秒前
樱sky完成签到,获得积分10
8秒前
8秒前
林屿溪完成签到,获得积分10
8秒前
Jupiter完成签到,获得积分10
8秒前
Henry完成签到,获得积分10
8秒前
9秒前
完美世界应助珍珠糖采纳,获得10
9秒前
cxt驳回了爆米花应助
9秒前
11秒前
11秒前
科研互通完成签到,获得积分10
11秒前
阿容发布了新的文献求助10
12秒前
所所应助感动水杯采纳,获得10
12秒前
万能图书馆应助优雅盼海采纳,获得10
13秒前
鹤轸完成签到,获得积分10
13秒前
饼子完成签到,获得积分10
13秒前
13秒前
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009167
求助须知:如何正确求助?哪些是违规求助? 3549013
关于积分的说明 11300491
捐赠科研通 3283494
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886146
科研通“疑难数据库(出版商)”最低求助积分说明 811259