Learning Epistasis and Residue Coevolution Patterns: Current Trends and Future Perspectives for Advancing Enzyme Engineering

共同进化 上位性 计算机科学 背景(考古学) 蛋白质测序 蛋白质工程 人工智能 序列空间 合成生物学 定向进化 数据科学 机器学习 计算生物学 生物 理论计算机科学 生态学 遗传学 生物化学 肽序列 数学 基因 巴拿赫空间 突变体 古生物学 纯数学
作者
Marcel Wittmund,Frédéric Cadet,Mehdi D. Davari
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:12 (22): 14243-14263 被引量:35
标识
DOI:10.1021/acscatal.2c01426
摘要

Engineering proteins and enzymes with the desired functionality has broad applications in molecular biology, biotechnology, biomedical sciences, health, and medicine. The vastness of protein sequence space and all the possible proteins it represents can pose a considerable barrier for enzyme engineering campaigns through directed evolution and rational design. The nonlinear effects of coevolution between amino acids in protein sequences complicate this further. Data-driven models increasingly provide scientists with the computational tools to navigate through the largely undiscovered forest of protein variants and catch a glimpse of the rules and effects underlying the topology of sequence space. In this review, we outline a complete theoretical journey through the processes of protein engineering methods such as directed evolution and rational design and reflect on these strategies and data-driven hybrid strategies in the context of sequence space. We discuss crucial phenomena of residue coevolution, such as epistasis, and review the history of models created over the past decade, aiming to infer rules of protein evolution from data and use this knowledge to improve the prediction of the structure–function relationship of proteins. Data-driven models based on deep learning algorithms are among the most promising methods that can account for the nonlinear phenomena of sequence space to some degree. We also critically discuss the available models to predict evolutionary coupling and epistatic effects (classical and deep learning) in terms of their capabilities and limitations. Finally, we present our perspective on possible future directions for developing data-driven approaches and provide key orientation points and necessities for the future of the fast-evolving field of enzyme engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪火车完成签到 ,获得积分10
刚刚
1秒前
jidou1011完成签到,获得积分10
1秒前
扁舟灬完成签到,获得积分10
1秒前
QZZ完成签到,获得积分10
1秒前
agnway完成签到,获得积分10
1秒前
2秒前
战战兢兢完成签到 ,获得积分10
2秒前
xuejie发布了新的文献求助30
2秒前
专一的傲白完成签到 ,获得积分10
2秒前
星辰大海应助miezhugong采纳,获得30
3秒前
zh完成签到,获得积分10
3秒前
123发布了新的文献求助10
3秒前
CodeCraft应助he采纳,获得10
3秒前
wisdom完成签到,获得积分10
4秒前
科研通AI2S应助Distance采纳,获得20
4秒前
5秒前
5秒前
肖耶啵完成签到,获得积分10
5秒前
betyby发布了新的文献求助10
6秒前
6秒前
电致阿光完成签到,获得积分10
7秒前
科研通AI2S应助zhuang采纳,获得10
7秒前
羊羊完成签到,获得积分10
7秒前
范月月完成签到 ,获得积分10
8秒前
甜美追命发布了新的文献求助10
9秒前
Eric_Zhang完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
9秒前
Lucas应助科研通管家采纳,获得10
10秒前
10秒前
万能图书馆应助yyy采纳,获得10
10秒前
weiweiwu12完成签到,获得积分10
10秒前
夏xia完成签到,获得积分10
10秒前
arzw完成签到,获得积分10
10秒前
hdh完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009004
求助须知:如何正确求助?哪些是违规求助? 3548719
关于积分的说明 11299835
捐赠科研通 3283284
什么是DOI,文献DOI怎么找? 1810333
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259