Learning Epistasis and Residue Coevolution Patterns: Current Trends and Future Perspectives for Advancing Enzyme Engineering

共同进化 上位性 计算机科学 背景(考古学) 蛋白质测序 蛋白质工程 人工智能 序列空间 合成生物学 定向进化 数据科学 机器学习 计算生物学 生物 理论计算机科学 生态学 遗传学 生物化学 肽序列 数学 基因 巴拿赫空间 突变体 古生物学 纯数学
作者
Marcel Wittmund,Frédéric Cadet,Mehdi D. Davari
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:12 (22): 14243-14263 被引量:45
标识
DOI:10.1021/acscatal.2c01426
摘要

Engineering proteins and enzymes with the desired functionality has broad applications in molecular biology, biotechnology, biomedical sciences, health, and medicine. The vastness of protein sequence space and all the possible proteins it represents can pose a considerable barrier for enzyme engineering campaigns through directed evolution and rational design. The nonlinear effects of coevolution between amino acids in protein sequences complicate this further. Data-driven models increasingly provide scientists with the computational tools to navigate through the largely undiscovered forest of protein variants and catch a glimpse of the rules and effects underlying the topology of sequence space. In this review, we outline a complete theoretical journey through the processes of protein engineering methods such as directed evolution and rational design and reflect on these strategies and data-driven hybrid strategies in the context of sequence space. We discuss crucial phenomena of residue coevolution, such as epistasis, and review the history of models created over the past decade, aiming to infer rules of protein evolution from data and use this knowledge to improve the prediction of the structure–function relationship of proteins. Data-driven models based on deep learning algorithms are among the most promising methods that can account for the nonlinear phenomena of sequence space to some degree. We also critically discuss the available models to predict evolutionary coupling and epistatic effects (classical and deep learning) in terms of their capabilities and limitations. Finally, we present our perspective on possible future directions for developing data-driven approaches and provide key orientation points and necessities for the future of the fast-evolving field of enzyme engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助冰可乐采纳,获得10
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
机灵的安南完成签到 ,获得积分10
1秒前
虚心绿草完成签到,获得积分10
1秒前
DANK1NG发布了新的文献求助10
2秒前
buqi完成签到,获得积分10
2秒前
2秒前
Orange应助哈哈哈采纳,获得30
2秒前
3秒前
3秒前
猪猪hero发布了新的文献求助30
3秒前
天天都肚子疼完成签到,获得积分10
3秒前
3秒前
困困发布了新的文献求助10
3秒前
slx发布了新的文献求助10
4秒前
纯懿发布了新的文献求助30
4秒前
4秒前
中岛悠斗发布了新的文献求助10
4秒前
王月关注了科研通微信公众号
5秒前
5秒前
清明完成签到,获得积分10
5秒前
ff发布了新的文献求助10
5秒前
6秒前
lxl完成签到,获得积分10
6秒前
杨lei发布了新的文献求助10
6秒前
6秒前
星辰大海应助紫心采纳,获得10
7秒前
buqi发布了新的文献求助10
7秒前
笑点低南晴完成签到,获得积分10
7秒前
贾翔完成签到,获得积分10
7秒前
7秒前
8秒前
Mikumo完成签到,获得积分10
8秒前
8秒前
9秒前
童童完成签到,获得积分10
9秒前
feizhuliu发布了新的文献求助10
9秒前
Hiiiiii完成签到,获得积分10
9秒前
hbu123发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5768619
求助须知:如何正确求助?哪些是违规求助? 5576280
关于积分的说明 15419148
捐赠科研通 4902454
什么是DOI,文献DOI怎么找? 2637767
邀请新用户注册赠送积分活动 1585694
关于科研通互助平台的介绍 1540805