Learning Epistasis and Residue Coevolution Patterns: Current Trends and Future Perspectives for Advancing Enzyme Engineering

共同进化 上位性 计算机科学 背景(考古学) 蛋白质测序 蛋白质工程 人工智能 序列空间 合成生物学 定向进化 数据科学 机器学习 计算生物学 生物 理论计算机科学 生态学 遗传学 生物化学 肽序列 数学 基因 巴拿赫空间 突变体 古生物学 纯数学
作者
Marcel Wittmund,Frédéric Cadet,Mehdi D. Davari
出处
期刊:ACS Catalysis 卷期号:12 (22): 14243-14263 被引量:33
标识
DOI:10.1021/acscatal.2c01426
摘要

Engineering proteins and enzymes with the desired functionality has broad applications in molecular biology, biotechnology, biomedical sciences, health, and medicine. The vastness of protein sequence space and all the possible proteins it represents can pose a considerable barrier for enzyme engineering campaigns through directed evolution and rational design. The nonlinear effects of coevolution between amino acids in protein sequences complicate this further. Data-driven models increasingly provide scientists with the computational tools to navigate through the largely undiscovered forest of protein variants and catch a glimpse of the rules and effects underlying the topology of sequence space. In this review, we outline a complete theoretical journey through the processes of protein engineering methods such as directed evolution and rational design and reflect on these strategies and data-driven hybrid strategies in the context of sequence space. We discuss crucial phenomena of residue coevolution, such as epistasis, and review the history of models created over the past decade, aiming to infer rules of protein evolution from data and use this knowledge to improve the prediction of the structure–function relationship of proteins. Data-driven models based on deep learning algorithms are among the most promising methods that can account for the nonlinear phenomena of sequence space to some degree. We also critically discuss the available models to predict evolutionary coupling and epistatic effects (classical and deep learning) in terms of their capabilities and limitations. Finally, we present our perspective on possible future directions for developing data-driven approaches and provide key orientation points and necessities for the future of the fast-evolving field of enzyme engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
巫马尔槐发布了新的文献求助10
1秒前
1秒前
咚咚发布了新的文献求助10
2秒前
2秒前
chenjun7080完成签到,获得积分10
2秒前
哈哈完成签到 ,获得积分10
3秒前
wuhuhu发布了新的文献求助10
4秒前
5秒前
yuhang完成签到,获得积分10
7秒前
lalalatiancai发布了新的文献求助10
8秒前
天真水香发布了新的文献求助10
8秒前
在水一方应助科研通管家采纳,获得20
9秒前
iNk应助科研通管家采纳,获得10
9秒前
guozizi应助科研通管家采纳,获得30
9秒前
iNk应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
9秒前
英姑应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
10秒前
13秒前
小树完成签到,获得积分10
13秒前
汉堡包应助FUN采纳,获得10
14秒前
14秒前
天真水香完成签到,获得积分10
15秒前
科目三应助王妍采纳,获得10
16秒前
16秒前
17秒前
光亮的雪青完成签到,获得积分10
17秒前
TPolymer发布了新的文献求助10
18秒前
JamesPei应助谦让的博采纳,获得10
19秒前
cjl发布了新的文献求助10
21秒前
wanci应助minrui采纳,获得10
22秒前
wangafa完成签到,获得积分10
22秒前
汉堡包应助zz采纳,获得10
23秒前
阔达岂愈发布了新的文献求助10
24秒前
Owen应助wuhuhu采纳,获得10
24秒前
CodeCraft应助lalalatiancai采纳,获得10
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353002
求助须知:如何正确求助?哪些是违规求助? 2977782
关于积分的说明 8682092
捐赠科研通 2658911
什么是DOI,文献DOI怎么找? 1456009
科研通“疑难数据库(出版商)”最低求助积分说明 674206
邀请新用户注册赠送积分活动 664884