Learning Epistasis and Residue Coevolution Patterns: Current Trends and Future Perspectives for Advancing Enzyme Engineering

共同进化 上位性 计算机科学 背景(考古学) 蛋白质测序 蛋白质工程 人工智能 序列空间 合成生物学 定向进化 数据科学 机器学习 计算生物学 生物 理论计算机科学 生态学 遗传学 生物化学 肽序列 数学 基因 巴拿赫空间 突变体 古生物学 纯数学
作者
Marcel Wittmund,Frédéric Cadet,Mehdi D. Davari
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:12 (22): 14243-14263 被引量:35
标识
DOI:10.1021/acscatal.2c01426
摘要

Engineering proteins and enzymes with the desired functionality has broad applications in molecular biology, biotechnology, biomedical sciences, health, and medicine. The vastness of protein sequence space and all the possible proteins it represents can pose a considerable barrier for enzyme engineering campaigns through directed evolution and rational design. The nonlinear effects of coevolution between amino acids in protein sequences complicate this further. Data-driven models increasingly provide scientists with the computational tools to navigate through the largely undiscovered forest of protein variants and catch a glimpse of the rules and effects underlying the topology of sequence space. In this review, we outline a complete theoretical journey through the processes of protein engineering methods such as directed evolution and rational design and reflect on these strategies and data-driven hybrid strategies in the context of sequence space. We discuss crucial phenomena of residue coevolution, such as epistasis, and review the history of models created over the past decade, aiming to infer rules of protein evolution from data and use this knowledge to improve the prediction of the structure–function relationship of proteins. Data-driven models based on deep learning algorithms are among the most promising methods that can account for the nonlinear phenomena of sequence space to some degree. We also critically discuss the available models to predict evolutionary coupling and epistatic effects (classical and deep learning) in terms of their capabilities and limitations. Finally, we present our perspective on possible future directions for developing data-driven approaches and provide key orientation points and necessities for the future of the fast-evolving field of enzyme engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助欣喜若灵采纳,获得10
刚刚
刚刚
小二郎应助风清扬采纳,获得10
刚刚
1秒前
1秒前
1秒前
科研通AI5应助吴微采纳,获得10
2秒前
温暖宛筠完成签到,获得积分10
2秒前
政政勇闯世界完成签到,获得积分10
3秒前
知名不具发布了新的文献求助10
3秒前
4秒前
sky完成签到,获得积分10
4秒前
科研通AI5应助未知采纳,获得10
4秒前
冷静的奇迹完成签到,获得积分10
5秒前
5秒前
upp完成签到,获得积分20
5秒前
ascv完成签到,获得积分10
5秒前
多喝水发布了新的文献求助10
6秒前
赘婿应助chensihao采纳,获得10
6秒前
精明玲发布了新的文献求助10
7秒前
7秒前
7秒前
香蕉觅云应助乔垣结衣采纳,获得10
7秒前
ding应助亚铁氰化钾采纳,获得10
8秒前
9秒前
niccer完成签到,获得积分10
9秒前
英姑应助柏林的柏采纳,获得10
9秒前
9秒前
10秒前
10秒前
未知完成签到,获得积分20
10秒前
10秒前
11秒前
止戈完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
Owen应助koi采纳,获得10
12秒前
upp发布了新的文献求助10
12秒前
niccer发布了新的文献求助100
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602404
求助须知:如何正确求助?哪些是违规求助? 4011681
关于积分的说明 12419962
捐赠科研通 3691873
什么是DOI,文献DOI怎么找? 2035322
邀请新用户注册赠送积分活动 1068516
科研通“疑难数据库(出版商)”最低求助积分说明 953096