Learning Epistasis and Residue Coevolution Patterns: Current Trends and Future Perspectives for Advancing Enzyme Engineering

共同进化 上位性 计算机科学 背景(考古学) 蛋白质测序 蛋白质工程 人工智能 序列空间 合成生物学 定向进化 数据科学 机器学习 计算生物学 生物 理论计算机科学 生态学 遗传学 生物化学 肽序列 数学 基因 巴拿赫空间 突变体 古生物学 纯数学
作者
Marcel Wittmund,Frédéric Cadet,Mehdi D. Davari
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:12 (22): 14243-14263 被引量:45
标识
DOI:10.1021/acscatal.2c01426
摘要

Engineering proteins and enzymes with the desired functionality has broad applications in molecular biology, biotechnology, biomedical sciences, health, and medicine. The vastness of protein sequence space and all the possible proteins it represents can pose a considerable barrier for enzyme engineering campaigns through directed evolution and rational design. The nonlinear effects of coevolution between amino acids in protein sequences complicate this further. Data-driven models increasingly provide scientists with the computational tools to navigate through the largely undiscovered forest of protein variants and catch a glimpse of the rules and effects underlying the topology of sequence space. In this review, we outline a complete theoretical journey through the processes of protein engineering methods such as directed evolution and rational design and reflect on these strategies and data-driven hybrid strategies in the context of sequence space. We discuss crucial phenomena of residue coevolution, such as epistasis, and review the history of models created over the past decade, aiming to infer rules of protein evolution from data and use this knowledge to improve the prediction of the structure–function relationship of proteins. Data-driven models based on deep learning algorithms are among the most promising methods that can account for the nonlinear phenomena of sequence space to some degree. We also critically discuss the available models to predict evolutionary coupling and epistatic effects (classical and deep learning) in terms of their capabilities and limitations. Finally, we present our perspective on possible future directions for developing data-driven approaches and provide key orientation points and necessities for the future of the fast-evolving field of enzyme engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
YY完成签到,获得积分10
1秒前
结实缘郡发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
小夏完成签到,获得积分10
2秒前
sfq完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
杨佳楠发布了新的文献求助10
3秒前
4秒前
所所应助一一一多采纳,获得10
5秒前
5秒前
JamesPei应助年年年年采纳,获得10
5秒前
逍遥游发布了新的文献求助10
5秒前
bio生物发布了新的文献求助10
6秒前
墨懿发布了新的文献求助10
6秒前
天才少年王旭东完成签到 ,获得积分20
6秒前
发发完成签到 ,获得积分10
7秒前
爆米花应助涵泽采纳,获得10
7秒前
深情安青应助jiqixi采纳,获得10
7秒前
浦老四发布了新的文献求助10
8秒前
8秒前
readhistory发布了新的文献求助10
8秒前
华仔应助三人行采纳,获得10
8秒前
Danboard完成签到,获得积分10
8秒前
Lizhuzhu完成签到,获得积分10
9秒前
火锅发布了新的文献求助10
9秒前
Yuanyuan发布了新的文献求助10
9秒前
年年年年完成签到,获得积分10
10秒前
11秒前
在水一方应助蜜桃奇迹采纳,获得10
12秒前
13秒前
14秒前
neil完成签到,获得积分10
14秒前
离歌完成签到,获得积分10
14秒前
14秒前
15秒前
刘欣桐完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524549
求助须知:如何正确求助?哪些是违规求助? 4615137
关于积分的说明 14546433
捐赠科研通 4553077
什么是DOI,文献DOI怎么找? 2495132
邀请新用户注册赠送积分活动 1475734
关于科研通互助平台的介绍 1447514