Machine learning prediction on the fractional free volume of polymer membranes

聚合物 范德瓦尔斯力 体积热力学 聚酰亚胺 热力学 吞吐量 材料科学 计算机科学 生物系统 化学 分子 物理 纳米技术 有机化学 复合材料 生物 电信 生物化学 无线 图层(电子)
作者
Lei Tao,Jinlong He,Tom Arbaugh,Jeffrey R. McCutcheon,Ying Li
出处
期刊:Journal of Membrane Science [Elsevier]
卷期号:665: 121131-121131 被引量:31
标识
DOI:10.1016/j.memsci.2022.121131
摘要

Fractional free volume (FFV) characterizes the microstructural level features of polymers and affects their properties including thermal, mechanical, and separation performance. Experimental measurements and theoretical analyses have been used to quantify the FFV of polymers, but challenges remain because of their limitations. Experimental measurements are laborious and based on semi-empirical equations, while Bondi's group contribution theory involves ambiguities like the determination of van der Waals volume and the choice of factor values in the theoretical equation. To efficiently evaluate the FFV of polymers, this study utilizes high-throughput molecular dynamics (MD) simulations to build a large dataset regarding polymer's FFV. Based on this large dataset, we further build machine learning (ML) models to establish the composition-structure relation. Inspired by group contribution theory which correlates polymer's functional groups to FFV, our ML models correlate polymer's sub-structures or physico-chemical indexes to FFV. Our study first benchmarks the MD simulation protocol to obtain reliable FFV of polymers and then carries out high-throughput MD simulations for more than 6500 homopolymers and 1400 polyamides. Such a large and diverse dataset makes the well-trained ML models more generalizable, compared with the group contribution theory. The efficiency of a feed-forward neural network model is further demonstrated by applying it to a hypothetical polyimide dataset of more than 8 million chemical structures. The predicted FFVs of hypothetical polyimides are further validated by MD simulations. The obtained FFVs of the 8 million polymers, plus their previously reported gas separation performances, demonstrate the promising capability of ML virtual screening for the discovery of polymer membranes with exceptional permeability/selectivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hoongyan完成签到 ,获得积分10
刚刚
乐观又lucky完成签到,获得积分10
刚刚
3秒前
4秒前
5秒前
tingting发布了新的文献求助10
8秒前
秋雅发布了新的文献求助10
9秒前
11秒前
深情安青应助俊逸的刺猬采纳,获得30
13秒前
大模型应助Christina采纳,获得10
14秒前
16秒前
早睡早起健康长寿完成签到,获得积分10
17秒前
冷静剑成完成签到,获得积分10
17秒前
东方天奇发布了新的文献求助10
18秒前
怕孤单的Hannah完成签到 ,获得积分10
19秒前
苗老九完成签到,获得积分10
20秒前
善学以致用应助里海怪物采纳,获得10
20秒前
不可以再驼背完成签到,获得积分10
21秒前
22秒前
叁金完成签到,获得积分10
22秒前
23秒前
24秒前
27秒前
Frisk12sfs发布了新的文献求助10
27秒前
袁青欣完成签到 ,获得积分10
27秒前
爱做实验的泡利完成签到,获得积分10
29秒前
慕青应助Frisk12sfs采纳,获得10
33秒前
眼睛大的一斩完成签到,获得积分20
34秒前
36秒前
城南完成签到 ,获得积分10
37秒前
zhenghongdan发布了新的文献求助10
37秒前
37秒前
宇文雅琴完成签到,获得积分10
37秒前
Orange应助sam采纳,获得30
38秒前
41秒前
42秒前
Jasper应助Jiaxiao采纳,获得10
43秒前
小张z完成签到,获得积分10
45秒前
46秒前
zhenghongdan完成签到,获得积分20
47秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140361
求助须知:如何正确求助?哪些是违规求助? 2791116
关于积分的说明 7798129
捐赠科研通 2447583
什么是DOI,文献DOI怎么找? 1301980
科研通“疑难数据库(出版商)”最低求助积分说明 626354
版权声明 601194