Machine learning prediction on the fractional free volume of polymer membranes

聚合物 范德瓦尔斯力 体积热力学 聚酰亚胺 热力学 吞吐量 材料科学 计算机科学 生物系统 化学 分子 物理 纳米技术 有机化学 复合材料 生物 电信 生物化学 无线 图层(电子)
作者
Lei Tao,Jinlong He,Tom Arbaugh,Jeffrey R. McCutcheon,Ying Li
出处
期刊:Journal of Membrane Science [Elsevier BV]
卷期号:665: 121131-121131 被引量:45
标识
DOI:10.1016/j.memsci.2022.121131
摘要

Fractional free volume (FFV) characterizes the microstructural level features of polymers and affects their properties including thermal, mechanical, and separation performance. Experimental measurements and theoretical analyses have been used to quantify the FFV of polymers, but challenges remain because of their limitations. Experimental measurements are laborious and based on semi-empirical equations, while Bondi's group contribution theory involves ambiguities like the determination of van der Waals volume and the choice of factor values in the theoretical equation. To efficiently evaluate the FFV of polymers, this study utilizes high-throughput molecular dynamics (MD) simulations to build a large dataset regarding polymer's FFV. Based on this large dataset, we further build machine learning (ML) models to establish the composition-structure relation. Inspired by group contribution theory which correlates polymer's functional groups to FFV, our ML models correlate polymer's sub-structures or physico-chemical indexes to FFV. Our study first benchmarks the MD simulation protocol to obtain reliable FFV of polymers and then carries out high-throughput MD simulations for more than 6500 homopolymers and 1400 polyamides. Such a large and diverse dataset makes the well-trained ML models more generalizable, compared with the group contribution theory. The efficiency of a feed-forward neural network model is further demonstrated by applying it to a hypothetical polyimide dataset of more than 8 million chemical structures. The predicted FFVs of hypothetical polyimides are further validated by MD simulations. The obtained FFVs of the 8 million polymers, plus their previously reported gas separation performances, demonstrate the promising capability of ML virtual screening for the discovery of polymer membranes with exceptional permeability/selectivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助明理的又菡采纳,获得50
刚刚
科研通AI5应助OYRKYORK采纳,获得80
1秒前
在水一方应助xf采纳,获得10
2秒前
斯文败类应助薇笑不慌采纳,获得10
2秒前
狗屎褚发布了新的文献求助10
6秒前
wings给wings的求助进行了留言
6秒前
科研通AI2S应助Wink14551采纳,获得10
7秒前
10秒前
希望天下0贩的0应助Rue采纳,获得10
11秒前
忐忑的咖啡豆完成签到,获得积分10
13秒前
科目三应助Ssyong采纳,获得10
14秒前
菲比完成签到 ,获得积分10
15秒前
小景007发布了新的文献求助10
15秒前
15秒前
18秒前
wanci应助温柔的白秋采纳,获得10
19秒前
Lignin发布了新的文献求助10
19秒前
20秒前
糟糕的学姐完成签到 ,获得积分10
20秒前
hhan发布了新的文献求助10
23秒前
拓跋天磊完成签到,获得积分10
24秒前
xf发布了新的文献求助10
25秒前
buno发布了新的文献求助10
26秒前
27秒前
bing完成签到,获得积分10
28秒前
30秒前
猪猪hero应助疯狂的海亦采纳,获得10
30秒前
FashionBoy应助瞬间de回眸采纳,获得10
30秒前
33秒前
momo完成签到,获得积分10
34秒前
欣喜黄蜂发布了新的文献求助10
34秒前
FashionBoy应助自由之柔采纳,获得10
35秒前
piahui完成签到,获得积分10
37秒前
38秒前
小杨发布了新的文献求助10
38秒前
41秒前
ygg应助科研通管家采纳,获得10
41秒前
pluto应助科研通管家采纳,获得10
41秒前
华仔应助科研通管家采纳,获得10
41秒前
良辰应助科研通管家采纳,获得10
41秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673897
求助须知:如何正确求助?哪些是违规求助? 3229328
关于积分的说明 9785232
捐赠科研通 2939948
什么是DOI,文献DOI怎么找? 1611465
邀请新用户注册赠送积分活动 760916
科研通“疑难数据库(出版商)”最低求助积分说明 736344