A novel framework for deep knowledge tracing via gating-controlled forgetting and learning mechanisms

遗忘 门控 计算机科学 追踪 人工智能 认知心理学 程序设计语言 心理学 神经科学
作者
Weizhong Zhao,Jun Xia,Xingpeng Jiang,Tingting He
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:60 (1): 103114-103114 被引量:15
标识
DOI:10.1016/j.ipm.2022.103114
摘要

In this paper, we propose a framework called Gating-controlled Forgetting and Learning mechanisms for Deep Knowledge Tracing (GFLDKT for short). In GFLDKT, two gating-controlled mechanisms are designed to model explicitly forgetting and learning behaviors in students’ learning process. With the designed gating-controlled mechanisms, both the interaction records and students’ different backgrounds are combined effectively for tracing the dynamic changes of students’ mastery of knowledge concepts. Results from extensive experiments demonstrate that the proposed framework outperforms the state-of-the-art models on the KT task. In addition, the ablation study shows that designed forgetting and learning mechanisms contribute clearly to the performance improvement of GFLDKT. • A novel deep learning-based KT model is proposed, which explicitly utilizes the theories of learning and forgetting curves in updating knowledge states. • Two gating-controlled mechanisms are designed for learning and forgetting curves, by which the interaction records and students’ distinctive backgrounds are considered simultaneously. • Results from extensive experiments demonstrate the effectiveness of the proposed model, which outperforms the SOTA KT models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
112233发布了新的文献求助10
刚刚
自然的南露完成签到 ,获得积分10
1秒前
淡定念波完成签到,获得积分20
3秒前
3秒前
5秒前
shuaige发布了新的文献求助10
5秒前
酷波er应助齐正采纳,获得10
5秒前
哈哈哈发布了新的文献求助10
6秒前
乐乐应助niu采纳,获得10
7秒前
琥珀完成签到,获得积分10
8秒前
甘蔗甜不甜完成签到,获得积分10
8秒前
9秒前
George完成签到,获得积分10
10秒前
yxy发布了新的文献求助10
10秒前
susu完成签到,获得积分10
12秒前
安安完成签到 ,获得积分10
12秒前
lf发布了新的文献求助30
12秒前
搞怪莫茗应助凡迪亚比采纳,获得20
13秒前
科研通AI2S应助Singularity采纳,获得10
14秒前
sqHALO发布了新的文献求助10
16秒前
16秒前
16秒前
16秒前
2Cd完成签到,获得积分10
17秒前
上官若男应助科研通管家采纳,获得10
17秒前
棋士应助科研通管家采纳,获得10
17秒前
Singularity应助科研通管家采纳,获得10
18秒前
18秒前
yx_cheng应助科研通管家采纳,获得10
18秒前
yx_cheng应助科研通管家采纳,获得10
18秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
Singularity应助科研通管家采纳,获得10
18秒前
思源应助科研通管家采纳,获得20
18秒前
orixero应助科研通管家采纳,获得10
18秒前
luoluo完成签到,获得积分10
18秒前
18秒前
18秒前
18秒前
20秒前
齐正发布了新的文献求助10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956068
求助须知:如何正确求助?哪些是违规求助? 3502276
关于积分的说明 11107024
捐赠科研通 3232788
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870389
科研通“疑难数据库(出版商)”最低求助积分说明 802011