劈形算符
欧米茄
组合数学
边界(拓扑)
功能(生物学)
物理
数学
数学分析
生物
量子力学
进化生物学
出处
期刊:Discrete and Continuous Dynamical Systems-series B
[American Institute of Mathematical Sciences]
日期:2015-09-01
卷期号:20 (9): 3235-3254
被引量:71
标识
DOI:10.3934/dcdsb.2015.20.3235
摘要
This paper considers the chemotaxis-Stokes system$$\begin{cases}\displaystyle n_t+u\cdot\nabla n=\Deltan-\nabla\cdot(nS(x,n,c)\cdot\nabla c),&(x,t)\in \Omega\times (0,T),\\\displaystylec_t+u\cdot\nabla c=\Delta c-nc, &(x,t)\in\Omega\times (0,T),\qquad(\star)\\\displaystyleu_t=\Delta u+\nabla P+n\nabla\phi , &(x,t)\in\Omega\times (0,T),\\\nabla\cdot u=0,&(x,t)\in\Omega\times (0,T).\end{cases}$$ under no-flux boundary conditions in a boundeddomain $\Omega \subset \mathbb{R}^3$ with smooth boundary. Here $S$ isa matrix-valued sensitivity satisfying$|S(x,n,c)|0$ and$\alpha>0$. Although $(\star)$ does not possess the naturalgradient-like functional structure available when $S$ reduces to ascalar function, we can still establish a new energy typeinequality. Based on this inequality we achieve a coupled estimatefor arbitrarily high Lebesgue norms of $n$ and $\nabla c$. Thishelps us to finally obtain the existence of a global classicalsolution when $\alpha$ is bigger than $\frac{1}{6}$.
科研通智能强力驱动
Strongly Powered by AbleSci AI