已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Degradation of Biomaterials

生物材料 脚手架 组织工程 生物医学工程 承重 材料科学 工程类 复合材料
作者
Noel Davison,Florénce Barrère-de Groot,Dirk W. Grijpma
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 177-215 被引量:34
标识
DOI:10.1016/b978-0-12-420145-3.00006-7
摘要

The tissue engineering approach requires suitable biomaterials to serve as three-dimensional scaffolds to support cell growth and differentiation into functional tissues. Depending on the type of tissue in need of repair, a biomaterial must be designed with specific performance criteria in mind. Several excellent books and review articles (e.g., Ratner et al. (2013), Temenoff and Mikos (2008)) on biomaterials have appeared. Essential characteristics of biomaterial scaffolds for tissue engineering applications are described by Williams (2014). For instance, biomaterials used as load-bearing prostheses for hips and knees should retain their mechanical function for the lifetime of the patient. In large bone defects, where load-bearing is not critical (e.g., the skull), biomaterials—used alone or with cells as tissue engineering constructs—need not be so mechanically strong (Chapter 10). In this case, a degradable biomaterial scaffold would be ideal to allow newly formed bone tissue to gradually take the place of the implanted construct resulting in seamless bone repair and no residual material. In this way, the manner in which the biomaterial is degraded—broken down in the body—is a primary consideration. When a biomaterial is implanted in the body, it is immediately exposed to physiologic fluid and shortly after, cells whose main purpose is to clear it from the host (Chapter 15). Thus, the degradation of biomaterials involves multiple physiologic processes at the same time making it a science to its own. This chapter reviews the degradation mechanisms of the two most established classes of biomaterials—ceramics and polymers—and how these degradation properties can be beneficial in their primary application, bone tissue engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
cheerfulsmurfs完成签到 ,获得积分10
1秒前
3秒前
布布完成签到,获得积分10
4秒前
6秒前
AswinnLyu完成签到,获得积分10
10秒前
10秒前
overlord完成签到,获得积分10
11秒前
顾矜应助小蛇玩采纳,获得10
11秒前
星辰大海应助WangZ采纳,获得10
15秒前
郑总完成签到 ,获得积分10
20秒前
潇洒斑马完成签到,获得积分10
22秒前
26秒前
Simone完成签到,获得积分10
27秒前
28秒前
量子星尘发布了新的文献求助10
29秒前
29秒前
鱼yu发布了新的文献求助10
32秒前
33秒前
冷静的忆秋完成签到,获得积分10
34秒前
大只佬发布了新的文献求助10
35秒前
小蛇玩发布了新的文献求助10
35秒前
wangx发布了新的文献求助10
36秒前
QF发布了新的文献求助10
37秒前
37秒前
37秒前
40秒前
Simone发布了新的文献求助10
41秒前
LiuJ完成签到 ,获得积分10
41秒前
seven发布了新的文献求助10
41秒前
42秒前
科研通AI5应助ls采纳,获得10
43秒前
46秒前
48秒前
49秒前
量子星尘发布了新的文献求助10
49秒前
科研通AI5应助iqa采纳,获得10
51秒前
peanut完成签到 ,获得积分10
52秒前
欣论完成签到 ,获得积分10
53秒前
TBI发布了新的文献求助10
54秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666266
求助须知:如何正确求助?哪些是违规求助? 3225307
关于积分的说明 9762401
捐赠科研通 2935195
什么是DOI,文献DOI怎么找? 1607513
邀请新用户注册赠送积分活动 759223
科研通“疑难数据库(出版商)”最低求助积分说明 735185