亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Stroke Risk Stratification and its Validation using Ultrasonic Echolucent Carotid Wall Plaque Morphology: A Machine Learning Paradigm

灰度 人工智能 分割 计算机科学 基本事实 冲程(发动机) 超声波 医学 放射科 像素 工程类 机械工程
作者
Tadashi Araki,Pankaj K. Jain,Harman S. Suri,Narendra D. Londhe,Nobutaka Ikeda,Ayman El‐Baz,Vimal K. Shrivastava,Luca Saba,Andrew Nicolaides,Shoaib Shafique,John R. Laird,Ajay Gupta,Jasjit S. Suri
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:80: 77-96 被引量:71
标识
DOI:10.1016/j.compbiomed.2016.11.011
摘要

Stroke risk stratification based on grayscale morphology of the ultrasound carotid wall has recently been shown to have a promise in classification of high risk versus low risk plaque or symptomatic versus asymptomatic plaques. In previous studies, this stratification has been mainly based on analysis of the far wall of the carotid artery. Due to the multifocal nature of atherosclerotic disease, the plaque growth is not restricted to the far wall alone. This paper presents a new approach for stroke risk assessment by integrating assessment of both the near and far walls of the carotid artery using grayscale morphology of the plaque. Further, this paper presents a scientific validation system for stroke risk assessment. Both these innovations have never been presented before. The methodology consists of an automated segmentation system of the near wall and far wall regions in grayscale carotid B-mode ultrasound scans. Sixteen grayscale texture features are computed, and fed into the machine learning system. The training system utilizes the lumen diameter to create ground truth labels for the stratification of stroke risk. The cross-validation procedure is adapted in order to obtain the machine learning testing classification accuracy through the use of three sets of partition protocols: (5, 10, and Jack Knife). The mean classification accuracy over all the sets of partition protocols for the automated system in the far and near walls is 95.08% and 93.47%, respectively. The corresponding accuracies for the manual system are 94.06% and 92.02%, respectively. The precision of merit of the automated machine learning system when compared against manual risk assessment system are 98.05% and 97.53% for the far and near walls, respectively. The ROC of the risk assessment system for the far and near walls is close to 1.0 demonstrating high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
yunyueqixun发布了新的文献求助10
5秒前
lhy发布了新的文献求助10
6秒前
9秒前
故意的紫菱完成签到,获得积分20
14秒前
wawaaaah完成签到 ,获得积分10
18秒前
Jemma完成签到 ,获得积分10
19秒前
Chris完成签到 ,获得积分0
23秒前
Owen应助故意的紫菱采纳,获得10
25秒前
25秒前
yunyueqixun完成签到,获得积分20
39秒前
Echo完成签到,获得积分10
43秒前
潇湘完成签到 ,获得积分10
45秒前
英俊的铭应助西瓜二郎采纳,获得10
48秒前
49秒前
半城微凉应助yunyueqixun采纳,获得10
49秒前
SYLH应助yunyueqixun采纳,获得10
49秒前
53秒前
56秒前
58秒前
dreamrain完成签到 ,获得积分10
1分钟前
Lucas应助符聪采纳,获得10
1分钟前
julia发布了新的文献求助50
1分钟前
CCC完成签到 ,获得积分10
1分钟前
CodeCraft应助lhy采纳,获得10
1分钟前
1分钟前
1分钟前
西瓜二郎发布了新的文献求助10
1分钟前
julia完成签到,获得积分10
1分钟前
小鹅完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
CHSLN完成签到 ,获得积分10
1分钟前
lhy发布了新的文献求助10
1分钟前
_ban发布了新的文献求助10
1分钟前
1分钟前
_ban完成签到 ,获得积分10
2分钟前
万能图书馆应助lhy采纳,获得10
2分钟前
griffon完成签到,获得积分10
2分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965636
求助须知:如何正确求助?哪些是违规求助? 3510880
关于积分的说明 11155473
捐赠科研通 3245347
什么是DOI,文献DOI怎么找? 1792850
邀请新用户注册赠送积分活动 874146
科研通“疑难数据库(出版商)”最低求助积分说明 804211