Stroke Risk Stratification and its Validation using Ultrasonic Echolucent Carotid Wall Plaque Morphology: A Machine Learning Paradigm

灰度 人工智能 分割 计算机科学 基本事实 冲程(发动机) 超声波 医学 放射科 像素 工程类 机械工程
作者
Tadashi Araki,Pankaj K. Jain,Harman S. Suri,Narendra D. Londhe,Nobutaka Ikeda,Ayman El‐Baz,Vimal K. Shrivastava,Luca Saba,Andrew Nicolaides,Shoaib Shafique,John R. Laird,Ajay Gupta,Jasjit S. Suri
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:80: 77-96 被引量:71
标识
DOI:10.1016/j.compbiomed.2016.11.011
摘要

Stroke risk stratification based on grayscale morphology of the ultrasound carotid wall has recently been shown to have a promise in classification of high risk versus low risk plaque or symptomatic versus asymptomatic plaques. In previous studies, this stratification has been mainly based on analysis of the far wall of the carotid artery. Due to the multifocal nature of atherosclerotic disease, the plaque growth is not restricted to the far wall alone. This paper presents a new approach for stroke risk assessment by integrating assessment of both the near and far walls of the carotid artery using grayscale morphology of the plaque. Further, this paper presents a scientific validation system for stroke risk assessment. Both these innovations have never been presented before. The methodology consists of an automated segmentation system of the near wall and far wall regions in grayscale carotid B-mode ultrasound scans. Sixteen grayscale texture features are computed, and fed into the machine learning system. The training system utilizes the lumen diameter to create ground truth labels for the stratification of stroke risk. The cross-validation procedure is adapted in order to obtain the machine learning testing classification accuracy through the use of three sets of partition protocols: (5, 10, and Jack Knife). The mean classification accuracy over all the sets of partition protocols for the automated system in the far and near walls is 95.08% and 93.47%, respectively. The corresponding accuracies for the manual system are 94.06% and 92.02%, respectively. The precision of merit of the automated machine learning system when compared against manual risk assessment system are 98.05% and 97.53% for the far and near walls, respectively. The ROC of the risk assessment system for the far and near walls is close to 1.0 demonstrating high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MEME发布了新的文献求助10
2秒前
2秒前
情怀应助LSH970829采纳,获得10
2秒前
CHINA_C13发布了新的文献求助10
5秒前
Mars发布了新的文献求助10
6秒前
哈哈哈完成签到,获得积分10
6秒前
玛卡巴卡应助平常的毛豆采纳,获得100
7秒前
默默的青旋完成签到,获得积分10
8秒前
11秒前
搜集达人应助淡淡采白采纳,获得10
11秒前
高高代珊完成签到 ,获得积分10
12秒前
gmc发布了新的文献求助10
13秒前
13秒前
14秒前
善学以致用应助Mian采纳,获得10
14秒前
学科共进发布了新的文献求助60
15秒前
LWJ完成签到 ,获得积分10
15秒前
15秒前
缓慢的糖豆完成签到,获得积分10
16秒前
阉太狼完成签到,获得积分10
16秒前
17秒前
soory完成签到,获得积分10
18秒前
任性的傲柏完成签到,获得积分10
18秒前
lwk205完成签到,获得积分0
18秒前
19秒前
一一完成签到,获得积分10
19秒前
19秒前
19秒前
高中生完成签到,获得积分10
20秒前
20秒前
20秒前
希望天下0贩的0应助TT采纳,获得10
21秒前
xxegt完成签到 ,获得积分10
21秒前
22秒前
爱吃泡芙发布了新的文献求助10
22秒前
susu完成签到,获得积分10
24秒前
会神发布了新的文献求助10
24秒前
KK完成签到,获得积分10
25秒前
充电宝应助justin采纳,获得10
27秒前
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824