Stroke Risk Stratification and its Validation using Ultrasonic Echolucent Carotid Wall Plaque Morphology: A Machine Learning Paradigm

灰度 人工智能 分割 计算机科学 基本事实 冲程(发动机) 超声波 医学 放射科 像素 工程类 机械工程
作者
Tadashi Araki,Pankaj K. Jain,Harman S. Suri,Narendra D. Londhe,Nobutaka Ikeda,Ayman El‐Baz,Vimal K. Shrivastava,Luca Saba,Andrew Nicolaides,Shoaib Shafique,John R. Laird,Ajay Gupta,Jasjit S. Suri
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:80: 77-96 被引量:71
标识
DOI:10.1016/j.compbiomed.2016.11.011
摘要

Stroke risk stratification based on grayscale morphology of the ultrasound carotid wall has recently been shown to have a promise in classification of high risk versus low risk plaque or symptomatic versus asymptomatic plaques. In previous studies, this stratification has been mainly based on analysis of the far wall of the carotid artery. Due to the multifocal nature of atherosclerotic disease, the plaque growth is not restricted to the far wall alone. This paper presents a new approach for stroke risk assessment by integrating assessment of both the near and far walls of the carotid artery using grayscale morphology of the plaque. Further, this paper presents a scientific validation system for stroke risk assessment. Both these innovations have never been presented before. The methodology consists of an automated segmentation system of the near wall and far wall regions in grayscale carotid B-mode ultrasound scans. Sixteen grayscale texture features are computed, and fed into the machine learning system. The training system utilizes the lumen diameter to create ground truth labels for the stratification of stroke risk. The cross-validation procedure is adapted in order to obtain the machine learning testing classification accuracy through the use of three sets of partition protocols: (5, 10, and Jack Knife). The mean classification accuracy over all the sets of partition protocols for the automated system in the far and near walls is 95.08% and 93.47%, respectively. The corresponding accuracies for the manual system are 94.06% and 92.02%, respectively. The precision of merit of the automated machine learning system when compared against manual risk assessment system are 98.05% and 97.53% for the far and near walls, respectively. The ROC of the risk assessment system for the far and near walls is close to 1.0 demonstrating high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kyle发布了新的文献求助10
4秒前
开放的悒完成签到,获得积分10
4秒前
Elliba发布了新的文献求助10
9秒前
儒雅紫夏完成签到,获得积分10
9秒前
10秒前
彦希完成签到 ,获得积分10
13秒前
嗯哼完成签到,获得积分0
13秒前
14秒前
二十又澪完成签到,获得积分10
15秒前
gb发布了新的文献求助10
18秒前
XTQ发布了新的文献求助10
18秒前
传奇3应助钙钛矿光伏采纳,获得10
18秒前
凶狠的盼柳完成签到,获得积分10
24秒前
lin完成签到,获得积分10
25秒前
风趣的傲之完成签到,获得积分10
26秒前
wanci应助半山采纳,获得10
27秒前
冷傲天川发布了新的文献求助10
29秒前
29秒前
一一完成签到 ,获得积分10
31秒前
酷波er应助小威采纳,获得10
32秒前
贾晓宇完成签到 ,获得积分10
32秒前
XTQ完成签到,获得积分10
32秒前
34秒前
无花果应助Akina采纳,获得10
37秒前
魁拔蛮吉完成签到 ,获得积分10
38秒前
四年电池发布了新的文献求助20
38秒前
zhaoxin完成签到,获得积分10
39秒前
39秒前
39秒前
无限的含羞草完成签到,获得积分10
41秒前
lanthanum完成签到,获得积分10
41秒前
41秒前
kyle完成签到,获得积分10
42秒前
半山发布了新的文献求助10
44秒前
冷傲天川完成签到,获得积分10
44秒前
温谷丝完成签到,获得积分10
45秒前
FFF123发布了新的文献求助10
46秒前
Pengzhuhuai完成签到 ,获得积分10
47秒前
羊毛毛衣完成签到,获得积分10
49秒前
半山完成签到,获得积分10
49秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292087
求助须知:如何正确求助?哪些是违规求助? 2928499
关于积分的说明 8437215
捐赠科研通 2600507
什么是DOI,文献DOI怎么找? 1419116
科研通“疑难数据库(出版商)”最低求助积分说明 660237
邀请新用户注册赠送积分活动 642866