Stroke Risk Stratification and its Validation using Ultrasonic Echolucent Carotid Wall Plaque Morphology: A Machine Learning Paradigm

灰度 人工智能 分割 计算机科学 基本事实 冲程(发动机) 超声波 医学 放射科 像素 工程类 机械工程
作者
Tadashi Araki,Pankaj K. Jain,Harman S. Suri,Narendra D. Londhe,Nobutaka Ikeda,Ayman El‐Baz,Vimal K. Shrivastava,Luca Saba,Andrew Nicolaides,Shoaib Shafique,John R. Laird,Ajay Gupta,Jasjit S. Suri
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:80: 77-96 被引量:71
标识
DOI:10.1016/j.compbiomed.2016.11.011
摘要

Stroke risk stratification based on grayscale morphology of the ultrasound carotid wall has recently been shown to have a promise in classification of high risk versus low risk plaque or symptomatic versus asymptomatic plaques. In previous studies, this stratification has been mainly based on analysis of the far wall of the carotid artery. Due to the multifocal nature of atherosclerotic disease, the plaque growth is not restricted to the far wall alone. This paper presents a new approach for stroke risk assessment by integrating assessment of both the near and far walls of the carotid artery using grayscale morphology of the plaque. Further, this paper presents a scientific validation system for stroke risk assessment. Both these innovations have never been presented before. The methodology consists of an automated segmentation system of the near wall and far wall regions in grayscale carotid B-mode ultrasound scans. Sixteen grayscale texture features are computed, and fed into the machine learning system. The training system utilizes the lumen diameter to create ground truth labels for the stratification of stroke risk. The cross-validation procedure is adapted in order to obtain the machine learning testing classification accuracy through the use of three sets of partition protocols: (5, 10, and Jack Knife). The mean classification accuracy over all the sets of partition protocols for the automated system in the far and near walls is 95.08% and 93.47%, respectively. The corresponding accuracies for the manual system are 94.06% and 92.02%, respectively. The precision of merit of the automated machine learning system when compared against manual risk assessment system are 98.05% and 97.53% for the far and near walls, respectively. The ROC of the risk assessment system for the far and near walls is close to 1.0 demonstrating high accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Kuhaku完成签到,获得积分10
刚刚
Yan完成签到 ,获得积分10
刚刚
小山峰2290完成签到,获得积分10
刚刚
MM完成签到,获得积分10
1秒前
A宇完成签到,获得积分10
1秒前
嘿ha完成签到,获得积分10
2秒前
兴奋芷完成签到,获得积分10
2秒前
2秒前
2秒前
早日毕业完成签到 ,获得积分10
2秒前
LuciusHe完成签到,获得积分10
2秒前
朱晗发布了新的文献求助10
2秒前
翻山越岭觅小溪完成签到,获得积分10
3秒前
小茉莉发布了新的文献求助10
3秒前
ks_Mo发布了新的文献求助10
4秒前
4秒前
研友_LpvQlZ完成签到,获得积分10
4秒前
SmallBamboo完成签到,获得积分10
4秒前
5秒前
5秒前
玫瑰遇上奶油完成签到 ,获得积分10
5秒前
上官若男应助Rylee采纳,获得10
5秒前
沉静傥完成签到,获得积分10
6秒前
白马爱毛驴完成签到,获得积分10
6秒前
运气爆棚完成签到,获得积分10
6秒前
FashionBoy应助吃的饱饱呀采纳,获得10
7秒前
7秒前
大红完成签到,获得积分10
7秒前
Ziy完成签到,获得积分10
7秒前
燕子完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
学术底层完成签到,获得积分10
8秒前
嗯嗯完成签到 ,获得积分10
8秒前
Akim应助昏睡的道消采纳,获得10
9秒前
9秒前
街道办事部完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645554
求助须知:如何正确求助?哪些是违规求助? 4769221
关于积分的说明 15030506
捐赠科研通 4804229
什么是DOI,文献DOI怎么找? 2568855
邀请新用户注册赠送积分活动 1526056
关于科研通互助平台的介绍 1485654