荧光
阿尔茨海默病
神经科学
化学
生物物理学
疾病
核磁共振
医学
病理
生物
物理
光学
作者
Yujin Seo,Kwang‐Su Park,Taewoong Ha,Young Hoon Joo,Yu Jin Hwang,Jung‐Hee Lee,Hoon Ryu,Hyunah Choo,Youhoon Chong
标识
DOI:10.1021/acschemneuro.6b00174
摘要
Development of a novel, tau-selective smart near-infrared fluorescence (NIRF) probe was attempted by combining the previously identified core scaffold 3,5-dimethoxy-N,N-dimethylaniline-4-yl moiety, with the characteristic donor-π-acceptor architecture of the smart NIRF Aβ probes DANIR-2c and MCAAD-3. A series of compounds (2 and 3) were prepared, which were identified as "turn-on" NIRF probes for the visual detection of tau aggregates and Aβ fibrils (λem = 650 nm, Stokes shifts = 70–110 nm). In particular, combination of the 3,5-dimethoxy-N,N-dimethylanilin-4-yl moiety and the donor part of MCAAD-3 endowed the resulting probes, 3g and 3h, with significant selectivity toward tau aggregates (selectivity for tau over Aβ = 5.7 and 3.8); they showed much higher fluorescence intensities upon binding to tau aggregates (FItau = 49 and 108) than when bound to Aβ fibrils (FIAβ = 9 and 28). Quantitative analysis of binding affinities and fluorescence properties of 3g and 3h revealed that microenvironment-sensitive molecular rotor-like behavior, rather than binding affinity to the target, is responsible for their selective turn-on fluorescence detection of tau fibrils. Selective fluorescent labeling of tau fibrils by 3g and 3h was further demonstrated by immunofluorescence staining of human Alzheimer's disease brain sections, which showed colocalization of the probes (3g and 3h) and phosphorylated tau antibody.
科研通智能强力驱动
Strongly Powered by AbleSci AI