材料科学
复合材料
复合泡沫
有限元法
冲击能
图层(电子)
纱线
结构工程
工程类
作者
Chao Zhi,Hairu Long,Fengxin Sun
标识
DOI:10.1177/0040517516660890
摘要
The aim of this research was to investigate the low-velocity impact properties of syntactic foam reinforced by warp-knitted spacer fabric (SF-WKSF). In order to discuss the effect of warp-knitted spacer fabric (WKSF) and hollow glass microballoon parameters on the impact performance of composites, eight different kinds of SF-WKSF samples were fabricated, including different WKSF surface layer structures, different spacer yarn diameters and inclination-angles, different microballoon types and contents. The low-velocity impact tests were carried out on an INSTRON 9250 HV drop-weight impact tester and the impact resistances of SF-WKSF were analyzed; it is indicated that most SF-WKSF specimens show higher peak impact force and major damage energy compared to neat syntactic foam. The results also demonstrate that the surface layer structure, inclination-angle of the spacer yarn and the volume fraction and type of microballoon have a significant influence on the low-impact performance of SF-WKSF. In addition, a finite element analysis finished with ANSYS/LS-DYNA and LS-PrePost was used to simulate the impact behaviors of SF-WKSF. The results of the finite element analysis are in agreement with the experimental results.
科研通智能强力驱动
Strongly Powered by AbleSci AI