Free amino acid determination by GC-MS combined with a chemometric approach for geographical classification of bracatinga honeydew honey (Mimosa scabrella Bentham)

蜜露 地理标志 生物 主成分分析 植物 园艺 地理 数学 统计 区域科学
作者
Mônia Stremel Azevedo,Siluana Katia Tischer Seraglio,Gabriela Rocha,Claudia Arroyo,Marcel Piovezan,Luciano Valdemiro Gonzaga,Daniel de Barcellos Falkenberg,Roseane Fett,Marcone Augusto Leal de Oliveira,Ana Carolina Oliveira Costa
出处
期刊:Food Control [Elsevier]
卷期号:78: 383-392 被引量:69
标识
DOI:10.1016/j.foodcont.2017.03.008
摘要

Honeydew honey is increasingly being valued by consumers and the food industry worldwide, particularly bracatinga honeydew honey (Bhh) obtained from honeydew of plant-sucking insects (Tachardiella sp.) that infest the tree species bracatinga (Mimosa scabrella Bentham) from Santa Catarina State (SC), Brazil. Due to mixture between honeys, authentication is an important aspect of quality control and its regard with the origin guarantee in terms of source and geographical documentation needs to be determined. We therefore determined the free amino acids (FAA) by GC-MS to elucidate the contribution of plant-sucking insects (Tachardiella sp.) and Apis mellifera bees to the Bhh in order to classify this honey from five different geographic areas of Santa Catarina, using chemometric approach. The results showed that proline is provided exclusively by Apis mellifera bees, and this honey could be differentiated into geographic regions based on the FAA profile. Principal component analysis identified the main FAA responsible for clustering of the samples in these regions (the sum of the first 2 principal components account for 82% of the total variance) and provided a similar discrimination of the geographical location map, particularly with regard to the northern and southern geographical orientations. This method is therefore a reliable analytical strategy for the authentication of this honey.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助荒野星辰采纳,获得10
1秒前
1秒前
YHY完成签到,获得积分10
3秒前
科研通AI5应助魏伯安采纳,获得10
3秒前
caoyy发布了新的文献求助10
3秒前
4秒前
5秒前
张喻235532完成签到,获得积分10
6秒前
失眠虔纹发布了新的文献求助10
7秒前
香蕉觅云应助糊涂的小伙采纳,获得10
7秒前
7秒前
sutharsons应助科研通管家采纳,获得200
9秒前
打打应助科研通管家采纳,获得10
9秒前
axin应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
9秒前
李健应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
10秒前
lu应助科研通管家采纳,获得10
10秒前
10秒前
华仔应助科研通管家采纳,获得10
10秒前
研友_MLJldZ发布了新的文献求助10
10秒前
wys完成签到 ,获得积分10
11秒前
12秒前
michaelvin完成签到,获得积分10
12秒前
学术大白完成签到 ,获得积分10
15秒前
15秒前
SYT完成签到,获得积分10
16秒前
17秒前
19秒前
19秒前
19秒前
20秒前
20秒前
魏伯安发布了新的文献求助10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849