In-Datacenter Performance Analysis of a Tensor Processing Unit

计算机科学 中央处理器 专用集成电路 并行计算 吞吐量 嵌入式系统 计算机硬件 操作系统 无线
作者
Norman P. Jouppi,Cliff Young,Nishant Patil,David A. Patterson,Gaurav Agrawal,Raminder Bajwa,S. C. Bates,Suresh Bhatia,Nan Boden,Al Borchers,Rick Boyle,Pierre-luc Cantin,Clifford Chao,Chris Clark,Jeremy Coriell,Mike Daley,Matt Dau,Jay B. Dean,Ben Gelb,Tara Vazir Ghaemmaghami,Rajendra Gottipati,William Gulland,Robert B. Hagmann,C. Richard Ho,Doug Hogberg,John Wei-Shan Hu,Robert Hundt,Dan Hurt,Julian Ibarz,Aaron Jaffey,Alek Jaworski,Alexander Kaplan,Harshit Khaitan,Daniel Killebrew,Andy Koch,Naveen Kumar,Steve Lacy,James Laudon,James Law,Diemthu Le,Chris Leary,Zhuyuan Liu,Kyle Lucke,Alan Lundin,Gordon MacKean,Adriana Maggiore,Maire Mahony,Kieran Miller,Rahul Nagarajan,Ravi Narayanaswami,Ray Ni,Kathy Nix,Thomas Norrie,Mark Omernick,Narayana Penukonda,Andy Phelps,Jonathan Ross,Matt Ross,Amir Salek Farrokhi,Emad Samadiani,Chris Severn,Gregory Sizikov,Matthew Snelham,Jed Souter,Dan Steinberg,Andy Swing,Mercedes Tan,Gregory Thorson,Bo Tian,Horia Toma,Erick Tuttle,Vijay Vasudevan,Richard Walter,Walter Wang,Eric Wilcox,Doe Hyun Yoon
标识
DOI:10.1145/3079856.3080246
摘要

Many architects believe that major improvements in cost-energy-performance must now come from domain-specific hardware. This paper evaluates a custom ASIC---called a Tensor Processing Unit (TPU) --- deployed in datacenters since 2015 that accelerates the inference phase of neural networks (NN). The heart of the TPU is a 65,536 8-bit MAC matrix multiply unit that offers a peak throughput of 92 TeraOps/second (TOPS) and a large (28 MiB) software-managed on-chip memory. The TPU's deterministic execution model is a better match to the 99th-percentile response-time requirement of our NN applications than are the time-varying optimizations of CPUs and GPUs that help average throughput more than guaranteed latency. The lack of such features helps explain why, despite having myriad MACs and a big memory, the TPU is relatively small and low power. We compare the TPU to a server-class Intel Haswell CPU and an Nvidia K80 GPU, which are contemporaries deployed in the same datacenters. Our workload, written in the high-level TensorFlow framework, uses production NN applications (MLPs, CNNs, and LSTMs) that represent 95% of our datacenters' NN inference demand. Despite low utilization for some applications, the TPU is on average about 15X -- 30X faster than its contemporary GPU or CPU, with TOPS/Watt about 30X -- 80X higher. Moreover, using the CPU's GDDR5 memory in the TPU would triple achieved TOPS and raise TOPS/Watt to nearly 70X the GPU and 200X the CPU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
领导范儿应助Dracoon采纳,获得10
2秒前
天天快乐应助chengxue采纳,获得10
3秒前
扎心应助无风海采纳,获得10
4秒前
小文cremen发布了新的文献求助10
5秒前
YANA完成签到,获得积分10
5秒前
Santiago完成签到,获得积分10
6秒前
阳光的静白完成签到,获得积分10
6秒前
英俊的铭应助dllz采纳,获得10
7秒前
天天快乐应助觅海采纳,获得10
9秒前
10秒前
LHX关注了科研通微信公众号
10秒前
法官大人完成签到 ,获得积分20
12秒前
潇洒飞丹发布了新的文献求助10
13秒前
酷波er应助Aline采纳,获得10
14秒前
14秒前
科目三应助科研通管家采纳,获得10
15秒前
小蘑菇应助科研通管家采纳,获得10
15秒前
猪猪hero应助科研通管家采纳,获得10
15秒前
CodeCraft应助科研通管家采纳,获得10
15秒前
所所应助科研通管家采纳,获得10
15秒前
Hayat应助科研通管家采纳,获得10
15秒前
Hello应助科研通管家采纳,获得10
15秒前
爆米花应助科研通管家采纳,获得10
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
16秒前
Lucas应助科研通管家采纳,获得10
16秒前
共享精神应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
17秒前
火星上牛青完成签到,获得积分10
17秒前
18秒前
18秒前
无花果应助小文cremen采纳,获得10
19秒前
爱打工的帕鲁完成签到 ,获得积分10
19秒前
20秒前
卿欣完成签到 ,获得积分10
20秒前
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959245
求助须知:如何正确求助?哪些是违规求助? 3505545
关于积分的说明 11124398
捐赠科研通 3237291
什么是DOI,文献DOI怎么找? 1789026
邀请新用户注册赠送积分活动 871512
科研通“疑难数据库(出版商)”最低求助积分说明 802824