柠檬酸
材料科学
聚合物
化学工程
热稳定性
甘油
催化作用
傅里叶变换红外光谱
热重分析
玻璃化转变
溶剂
有机化学
高分子化学
复合材料
化学
工程类
作者
Marc-André Bérubé,Diane Schorr,Richard Ball,Véronic Landry,Pierre Blanchet
标识
DOI:10.1007/s10924-017-1011-8
摘要
The development of wood treatments is of increasing industrial importance. A novel technique for improving the properties of lodgepole pine and white pine through modification of the microstructure is described. The present investigation is devoted to the synthesis and determination of in situ parameters of citric acid and glycerol based polymers for wood impregnation. This solvent free approach is environmentally friendly and achieved through an esterification condensation reaction under acidic conditions. Crude glycerol and citric acid reactants were cross-linked via a curing process at 160 °C creating a polymer with only water as the byproduct. The ester bonds and crosslinking levels were controlled using different catalysts and citric acid contents and related to the reaction time and temperature. The nature of bonding within the polymers and at the wood cell walls was determined by FT-IR analysis. The thermal properties such as glass transition temperature (Tg) were studied using TGA/DSC and the effect of citric acid content and catalyst type determined. Dimensional stability of impregnated wood samples improved above 50% for each sample with HCl and p-TSA catalysts compared to control samples. FTIR spectra were studied to show the presence of the ester linkages of the polymer in situ at the wood cell walls. Bonding between the polymer and wood macromolecules were observed by scanning electron microscopy and interpreted as evidence of chemical bonds at the wood cells. When prepared using a catalyst, the polymer was intimately incorporated into wood structure significantly improving the substrate dimensional stability. Enhanced stability makes this approach of particular interest for exterior wood products especially as a green renewable option for the wood industry.
科研通智能强力驱动
Strongly Powered by AbleSci AI