The effect of fluid shear stress on the in vitro degradation of poly(lactide‐co‐glycolide) acid membranes

材料科学 PLGA公司 极限抗拉强度 复合材料 剪应力 降级(电信) 粘度 模拟体液 可生物降解聚合物 聚合物 生物医学工程 纳米技术 纳米颗粒 化学 扫描电子显微镜 电信 医学 生物化学 计算机科学
作者
Zhaowei Chu,Quan Zheng,Meng Guo,Jie Yao,Peng Xu,Wentao Feng,Yongzhao Hou,Gang Zhou,Lizhen Wang,Xiaoming Li,Yubo Fan
出处
期刊:Journal of Biomedical Materials Research Part A [Wiley]
卷期号:104 (9): 2315-2324 被引量:29
标识
DOI:10.1002/jbm.a.35766
摘要

Poly(lactide-co-glycolide) acid (PLGA) has been widely used as a biodegradable polymer material for coating stents or fabricating biodegradable stents. Its mechanism of degradation has been extensively investigated, especially with regard to how tensile and compressive loadings may affect the in vitro degradation of PLGA. Fluid shear stress is also one of the most important factors in the development of atherosclerosis and restenosis. But the effect of fluid shear stress on the degradation process is still unclear. The purpose of this study was to characterize the in vitro degradation of PLGA membranes that experienced different fluid shear stresses in 150 mL of deionized water at 37°C for 20 days. Particular emphasis was given to changes in the viscosity of the degradation solution, as well as the mechanical and morphological properties of the samples. The viscosity of the degradation solution with the mechanical loaded specimens was more severely affected than that of the control group. Increasing the fluid shear stress could accelerate the loss of the ultimate strength of PLGA membranes while it slowed down the change of the tensile elastic modulus in the early period. With regard to morphology, the surface roughness was more obviously reduced in the loaded groups. This indicated that the fluid shear stress could affect the in vitro degradation of PLGA membranes. Therefore, this study could help improve the design of PLGA membranes for biomedical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2016.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助日常常采纳,获得10
1秒前
李健的粉丝团团长应助ZDS采纳,获得10
1秒前
凡夫俗子发布了新的文献求助10
2秒前
Enoch发布了新的文献求助10
3秒前
Miao完成签到,获得积分20
4秒前
大个应助楚文强采纳,获得10
5秒前
唯心如意完成签到,获得积分10
5秒前
5秒前
8秒前
NexusExplorer应助kk采纳,获得10
8秒前
苹果煎饼完成签到,获得积分10
8秒前
DenM7发布了新的文献求助10
12秒前
yy完成签到,获得积分10
15秒前
DenM7完成签到,获得积分10
18秒前
20秒前
科研通AI5应助kkk1988采纳,获得10
21秒前
lvbowen完成签到,获得积分10
23秒前
zzhhcc发布了新的文献求助10
26秒前
27秒前
科研通AI5应助猪猪hero采纳,获得10
28秒前
情怀应助科研通管家采纳,获得10
30秒前
杨文成应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
桐桐应助科研通管家采纳,获得10
30秒前
杨文成应助科研通管家采纳,获得10
31秒前
ding应助科研通管家采纳,获得10
31秒前
orixero应助科研通管家采纳,获得10
31秒前
ding应助科研通管家采纳,获得10
31秒前
迟大猫应助科研通管家采纳,获得10
31秒前
31秒前
楚文强发布了新的文献求助10
33秒前
Crema完成签到,获得积分10
35秒前
阴险的麻花完成签到 ,获得积分10
35秒前
zcc完成签到,获得积分10
36秒前
完美世界应助云湮采纳,获得10
37秒前
王佳完成签到,获得积分10
39秒前
juju1234完成签到,获得积分10
40秒前
找文献完成签到 ,获得积分10
40秒前
收手吧大哥应助落后觅云采纳,获得30
41秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737290
求助须知:如何正确求助?哪些是违规求助? 3281175
关于积分的说明 10023282
捐赠科研通 2997875
什么是DOI,文献DOI怎么找? 1644872
邀请新用户注册赠送积分活动 782227
科研通“疑难数据库(出版商)”最低求助积分说明 749731