Fast Vibrational Imaging of Single Cells and Tissues by Stimulated Raman Scattering Microscopy

拉曼散射 拉曼光谱 显微镜 相干反斯托克斯拉曼光谱 荧光 化学 荧光寿命成像显微镜 化学成像 分子 散射 荧光显微镜 分析化学(期刊) 生物物理学 光学 物理 色谱法 计算机科学 生物 有机化学 人工智能 高光谱成像
作者
Delong Zhang,Ping Wang,Mikhail N. Slipchenko,Ji‐Xin Cheng
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:47 (8): 2282-2290 被引量:148
标识
DOI:10.1021/ar400331q
摘要

Traditionally, molecules are analyzed in a test tube. Taking biochemistry as an example, the majority of our knowledge about cellular content comes from analysis of fixed cells or tissue homogenates using tools such as immunoblotting and liquid chromatography-mass spectrometry. These tools can indicate the presence of molecules but do not provide information on their location or interaction with each other in real time, restricting our understanding of the functions of the molecule under study. For real-time imaging of labeled molecules in live cells, fluorescence microscopy is the tool of choice. Fluorescent labels, however, are too bulky for small molecules such as fatty acids, amino acids, and cholesterol. These challenges highlight a critical need for development of chemical imaging platforms that allow in situ or in vivo analysis of molecules. Vibrational spectroscopy based on spontaneous Raman scattering is widely used for label-free analysis of chemical content in cells and tissues. However, the Raman process is a weak effect, limiting its application for fast chemical imaging of a living system. With high imaging speed and 3D spatial resolution, coherent Raman scattering microscopy is enabling a new approach for real-time vibrational imaging of single cells in a living system. In most experiments, coherent Raman processes involve two excitation fields denoted as pump at ωp and Stokes at ωs. When the beating frequency between the pump and Stokes fields (ωp - ωs) is resonant with a Raman-active molecular vibration, four major coherent Raman scattering processes occur simultaneously, namely, coherent anti-Stokes Raman scattering (CARS) at (ωp - ωs) + ωp, coherent Stokes Raman scattering (CSRS) at ωs - (ωp - ωs), stimulated Raman gain (SRG) at ωs, and stimulated Raman loss (SRL) at ωp. In SRG, the Stokes beam experiences a gain in intensity, whereas in SRL, the pump beam experiences a loss. Both SRG and SRL belong to stimulated Raman scattering (SRS), in which the energy difference between the pump and Stokes fields is transferred to the molecule for vibrational excitation. The SRS signal appears at the same wavelengths as the excitation fields and is commonly extracted through a phase-sensitive detection scheme. The detected intensity change because of a Raman transition is proportional to Im[χ(3)]IpIs, where χ(3) represents the third-order nonlinear susceptibility, Ip and Is stand for the intensity of the pump and Stokes fields. In this Account, we discuss the most recent advances in the technical development and enabling applications of SRS microscopy. Compared to CARS, the SRS contrast is free of nonresonant background. Moreover, the SRS intensity is linearly proportional to the density of target molecules in focus. For single-frequency imaging, an SRS microscope offers a speed that is ∼1000 times faster than a line-scan Raman microscope and 10,000 times faster than a point-scan Raman microscope. It is important to emphasize that SRS and spontaneous Raman scattering are complementary to each other. Spontaneous Raman spectroscopy covers the entire window of molecular vibrations, which allows extraction of subtleties via multivariate analysis. SRS offers the speed advantage by focusing on either a single Raman band or a defined spectral window of target molecules. Integrating single-frequency SRS imaging and spontaneous Raman spectroscopy on a single platform allows quantitative compositional analysis of objects inside single live cells.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐花生完成签到,获得积分20
1秒前
核桃发布了新的文献求助10
2秒前
berg完成签到,获得积分10
2秒前
zy完成签到 ,获得积分10
2秒前
CY发布了新的文献求助10
3秒前
老艺人发布了新的文献求助10
4秒前
顺其自然_666888完成签到,获得积分10
4秒前
奈克罗普陀西斯完成签到,获得积分10
5秒前
xyy完成签到,获得积分10
5秒前
7秒前
分析法FXF应助皮皮采纳,获得20
7秒前
哈利波特大完成签到,获得积分10
7秒前
7秒前
等风来完成签到,获得积分20
8秒前
8秒前
8秒前
zzmyyds完成签到,获得积分10
8秒前
11秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
乐乐应助Mnegya采纳,获得10
12秒前
12秒前
nicoco完成签到,获得积分10
13秒前
酷波er应助CY采纳,获得10
13秒前
Tonykoose发布了新的文献求助10
16秒前
panghu完成签到,获得积分10
16秒前
wanci应助何安采纳,获得10
16秒前
英姑应助周周采纳,获得10
17秒前
尤野发布了新的文献求助10
17秒前
Swift168_YY完成签到 ,获得积分10
17秒前
小魏完成签到,获得积分10
17秒前
18秒前
blusky完成签到,获得积分10
19秒前
wenjun_50完成签到,获得积分10
19秒前
20秒前
SciGPT应助年年年年采纳,获得10
20秒前
20秒前
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717887
求助须知:如何正确求助?哪些是违规求助? 5248869
关于积分的说明 15283627
捐赠科研通 4867961
什么是DOI,文献DOI怎么找? 2613978
邀请新用户注册赠送积分活动 1563880
关于科研通互助平台的介绍 1521369