Fast Vibrational Imaging of Single Cells and Tissues by Stimulated Raman Scattering Microscopy

拉曼散射 拉曼光谱 显微镜 相干反斯托克斯拉曼光谱 荧光 化学 荧光寿命成像显微镜 化学成像 分子 散射 荧光显微镜 分析化学(期刊) 生物物理学 光学 物理 色谱法 计算机科学 生物 有机化学 人工智能 高光谱成像
作者
Delong Zhang,Ping Wang,Mikhail N. Slipchenko,Ji‐Xin Cheng
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:47 (8): 2282-2290 被引量:148
标识
DOI:10.1021/ar400331q
摘要

Traditionally, molecules are analyzed in a test tube. Taking biochemistry as an example, the majority of our knowledge about cellular content comes from analysis of fixed cells or tissue homogenates using tools such as immunoblotting and liquid chromatography-mass spectrometry. These tools can indicate the presence of molecules but do not provide information on their location or interaction with each other in real time, restricting our understanding of the functions of the molecule under study. For real-time imaging of labeled molecules in live cells, fluorescence microscopy is the tool of choice. Fluorescent labels, however, are too bulky for small molecules such as fatty acids, amino acids, and cholesterol. These challenges highlight a critical need for development of chemical imaging platforms that allow in situ or in vivo analysis of molecules. Vibrational spectroscopy based on spontaneous Raman scattering is widely used for label-free analysis of chemical content in cells and tissues. However, the Raman process is a weak effect, limiting its application for fast chemical imaging of a living system. With high imaging speed and 3D spatial resolution, coherent Raman scattering microscopy is enabling a new approach for real-time vibrational imaging of single cells in a living system. In most experiments, coherent Raman processes involve two excitation fields denoted as pump at ωp and Stokes at ωs. When the beating frequency between the pump and Stokes fields (ωp - ωs) is resonant with a Raman-active molecular vibration, four major coherent Raman scattering processes occur simultaneously, namely, coherent anti-Stokes Raman scattering (CARS) at (ωp - ωs) + ωp, coherent Stokes Raman scattering (CSRS) at ωs - (ωp - ωs), stimulated Raman gain (SRG) at ωs, and stimulated Raman loss (SRL) at ωp. In SRG, the Stokes beam experiences a gain in intensity, whereas in SRL, the pump beam experiences a loss. Both SRG and SRL belong to stimulated Raman scattering (SRS), in which the energy difference between the pump and Stokes fields is transferred to the molecule for vibrational excitation. The SRS signal appears at the same wavelengths as the excitation fields and is commonly extracted through a phase-sensitive detection scheme. The detected intensity change because of a Raman transition is proportional to Im[χ(3)]IpIs, where χ(3) represents the third-order nonlinear susceptibility, Ip and Is stand for the intensity of the pump and Stokes fields. In this Account, we discuss the most recent advances in the technical development and enabling applications of SRS microscopy. Compared to CARS, the SRS contrast is free of nonresonant background. Moreover, the SRS intensity is linearly proportional to the density of target molecules in focus. For single-frequency imaging, an SRS microscope offers a speed that is ∼1000 times faster than a line-scan Raman microscope and 10,000 times faster than a point-scan Raman microscope. It is important to emphasize that SRS and spontaneous Raman scattering are complementary to each other. Spontaneous Raman spectroscopy covers the entire window of molecular vibrations, which allows extraction of subtleties via multivariate analysis. SRS offers the speed advantage by focusing on either a single Raman band or a defined spectral window of target molecules. Integrating single-frequency SRS imaging and spontaneous Raman spectroscopy on a single platform allows quantitative compositional analysis of objects inside single live cells.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爱听歌的白开水完成签到 ,获得积分20
1秒前
狂野的友灵完成签到 ,获得积分10
1秒前
1秒前
小小康康完成签到,获得积分10
1秒前
1秒前
迷路雨寒发布了新的文献求助30
2秒前
李梦媛发布了新的文献求助10
3秒前
外向的口红完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
嘟嘟卡皮巴拉完成签到 ,获得积分10
6秒前
科目三应助乐观的小松鼠采纳,获得20
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
柯北发布了新的文献求助10
10秒前
元谷雪发布了新的文献求助10
11秒前
zakai完成签到,获得积分10
11秒前
13秒前
Shawn完成签到,获得积分10
13秒前
14秒前
所所应助孙漪采纳,获得10
14秒前
爆米花应助研友_nxGyxL采纳,获得30
14秒前
Owen应助呆呆要努力采纳,获得10
14秒前
15秒前
zyme发布了新的文献求助10
15秒前
Jasper应助读书的时候采纳,获得10
16秒前
16秒前
vv发布了新的文献求助10
17秒前
hdy331完成签到,获得积分0
17秒前
tengfei完成签到,获得积分10
18秒前
lzq1116发布了新的文献求助10
19秒前
搜集达人应助代秋采纳,获得10
19秒前
黑熊完成签到,获得积分10
19秒前
19秒前
20秒前
无辜紫菜发布了新的文献求助10
20秒前
华仔应助薛变霞采纳,获得10
21秒前
哈尼完成签到,获得积分10
21秒前
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693788
求助须知:如何正确求助?哪些是违规求助? 5094331
关于积分的说明 15212383
捐赠科研通 4850595
什么是DOI,文献DOI怎么找? 2601854
邀请新用户注册赠送积分活动 1553652
关于科研通互助平台的介绍 1511661