The purpose of this work was to study the effect of surface tension and surface dilatational modulus on foam performance in high-salinity water in a porous medium. In order to clarify the role of the surface dilatational property in foam flow in a porous medium, three systems were established: a system with low surface dilatational modulus and high surface tension, a system with low surface dilatational modulus and low surface tension, and a system with high surface dilatational modulus and low surface tension. Measurement of dilatational modulus and surface tension showed that lauroamide propyl betaine (LAB) could not reduce surface tension and that surface dilatational modulus was low. The addition of lauric acid (LCOOH) to LAB could not achieve high surface dilatational modulus; however, it could reach lower surface tension. The addition of myristic acid (MCOOH) to LAB could achieve high surface dilatational modulus and lower surface tension. Unlike the other two systems, the results of a dilatational modulus comprised of a mixture of MCOOH and LAB were not a constant, as demonstrated by varied surface area deformation outcomes. With the increase of deformation, surface dilatational modulus decreased. Results of foam flow tests showed that among the two lower surface dilatational modulus systems, LAB foam had higher flow resistance regardless of flow rate. Among the two systems of similar lower surface tension, the mixture of LAB and MCOOH showed higher flow resistance than the mixture of LAB and LCOOH. However, with the increase of flow rate, pressure differences between the two systems became smaller, which corresponded to the decrease of surface dilatational modulus with an increase of deformation.