细胞凋亡
细胞毒性
活性氧
受体
体外
细胞生物学
毒性
淋巴细胞
生物
生物物理学
分子生物学
化学
免疫学
生物化学
有机化学
作者
Zhong-Jun Ding,Zhijun Zhang,Hongwei Ma,Yanyan Chen
摘要
Graphene oxide (GO) has shown tremendous application potential as a biomedical material. However, its interactions with blood components are not yet well understood. In this work, we assess the toxicity of pristine GO (p-GO) and functionalized GO (GO-COOH and GO-PEI) to primary human peripheral blood T lymphocytes and human serum albumin (HSA), and also study the underlying toxic mechanism. Our results indicate that p-GO and GO-COOH have good biocompatibility to T lymphocytes at the concentration below 25 μg mL–1, but notable cytotoxicity above 50 μg mL–1. By contrast, GO-PEI exhibits significant toxicity even at 1.6 μg mL–1. Further investigations show that although p-GO does not enter into the cell or damage the membrane, its presence leads to the increase in reactive oxygen species (ROS), moderate DNA damage, and T lymphocyte apoptosis. Interestingly, little effect on T lymphocyte immune response suppression is observed in this process despite p-GO inflicting cell apoptosis. The toxic mechanism is that p-GO interacts directly with the protein receptors to inhibit their ligand-binding ability, leading to ROS-dependent passive apoptosis through the B-cell lymphoma-2 (Bcl-2) pathway. Compared with p-GO, GO-COOH exhibits a similar toxic effect on T lymphocytes except keeping a normal ROS level. A proposed toxic mechanism is that GO-COOH inhibits protein receptor–ligand binding, and passes the passive apoptosis signal to nucleus DNA through a ROS-independent mechanism. On the other hand, GO-PEI shows severe hematotoxicity to T lymphocytes by inducing membrane damage. For plasma protein HSA, the binding of GO-COOH results in minimal conformational change and HSA’s binding capacity to bilirubin remains unaffected, while the binding of p-GO and GO-PEI exhibits strong toxicity on HSA. These findings on the interactions of two-dimensional nanomaterials and biological systems, along with the enquiry of the mechanisms, would provide essential support for further safety evaluation of the biomedical applications of GO.
科研通智能强力驱动
Strongly Powered by AbleSci AI