人工智能
分割
计算机科学
基本事实
散斑噪声
图像分割
模式识别(心理学)
相似性(几何)
成像体模
尺度空间分割
斑点图案
计算机视觉
噪音(视频)
图像(数学)
医学
放射科
作者
Anca Ciurte,Nawal Houhou,Sergiu Nedevschi,Alessia Pica,Francis L. Munier,Jean‐Philippe Thiran,Xavier Bresson,Meritxell Bach Cuadra
标识
DOI:10.1109/isbi.2011.5872564
摘要
Segmenting ultrasound images is a challenging problem where standard unsupervised segmentation methods such as the well-known Chan-Vese method fail. We propose in this paper an efficient segmentation method for this class of images. Our proposed algorithm is based on a semi-supervised approach (user labels) and the use of image patches as data features. We also consider the Pearson distance between patches, which has been shown to be robust w.r.t speckle noise present in ultrasound images. Our results on phantom and clinical data show a very high similarity agreement with the ground truth provided by a medical expert.
科研通智能强力驱动
Strongly Powered by AbleSci AI