已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prognostic and predictive value of a microRNA signature in stage II colon cancer: a microRNA expression analysis

医学 小RNA 肿瘤科 内科学 签名(拓扑) 结直肠癌 预测值 价值(数学) 阶段(地层学) 癌症研究 癌症 统计 基因 数学 遗传学 生物 古生物学 几何学
作者
Jiaxing Zhang,Song Wu,Zhenhua Chen,Jinhuan Wei,Yi-Ji Liao,Jian Lei,Ming Hu,Geng-Zhen Chen,Bing Liao,Jian Lü,Hong-Wei Zhao,Wei Chen,Yu-Long He,Hui‐Yun Wang,Dan Xie,Junhang Luo
出处
期刊:Lancet Oncology [Elsevier BV]
卷期号:14 (13): 1295-1306 被引量:528
标识
DOI:10.1016/s1470-2045(13)70491-1
摘要

Current staging methods do not accurately predict the risk of disease recurrence and benefit of adjuvant chemotherapy for patients who have had surgery for stage II colon cancer. We postulated that expression patterns of multiple microRNAs (miRNAs) could, if combined into a single model, improve postoperative risk stratification and prediction of chemotherapy benefit for these patients.Using miRNA microarrays, we analysed 40 paired stage II colon cancer tumours and adjacent normal mucosa tissues, and identified 35 miRNAs that were differentially expressed between tumours and normal tissue. Using paraffin-embedded specimens from a further 138 patients with stage II colon cancer, we confirmed differential expression of these miRNAs using qRT-PCR. We then built a six-miRNA-based classifier using the LASSO Cox regression model, based on the association between the expression of every miRNA and the duration of individual patients' disease-free survival. We validated the prognostic and predictive accuracy of this classifier in both the internal testing group of 138 patients, and an external independent group of 460 patients.Using the LASSO model, we built a classifier based on the six miRNAs: miR-21-5p, miR-20a-5p, miR-103a-3p, miR-106b-5p, miR-143-5p, and miR-215. Using this tool, we were able to classify patients between those at high risk of disease progression (high-risk group), and those at low risk of disease progression (low-risk group). Disease-free survival was significantly different between these groups in every set of patients. In the initial training group of patients, 5-year disease-free survival was 89% (95% CI 77·3-94·4) for the low-risk group, and 60% (46·3-71·0) for the high-risk group (hazard ratio [HR] 4·24, 95% CI 2·13-8·47; p<0·0001). In the internal testing set of patients, 5-year disease-free survival was 85% (95% CI 74·3-91·8) for the low-risk group, and 57% (42·8-68·5) for the high-risk group (HR 3·63, 1·86-7·01; p<0·0001), and in the independent validation set of patients, was 85% (79·6-89·0) for the low-risk group and 54% (46·4-61·1) for the high-risk group (HR 3·70, 2·56-5·35; p<0·0001). The six-miRNA-based classifier was an independent prognostic factor for, and had better prognostic value than, clinicopathological risk factors and mismatch repair status. In an ad-hoc analysis, the patients in the high-risk group were found to have a favourable response to adjuvant chemotherapy (HR 1·69, 1·17-2·45; p=0·0054). We developed two nomograms for clinical use that integrated the six-miRNA-based classifier and four clinicopathological risk factors to predict which patients might benefit from adjuvant chemotherapy after surgery for stage II colon cancer.Our six-miRNA-based classifier is a reliable prognostic and predictive tool for disease recurrence in patients with stage II colon cancer, and might be able to predict which patients benefit from adjuvant chemotherapy. It might facilitate patient counselling and individualise management of patients with this disease.Natural Science Foundation of China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小胡萝白发布了新的文献求助10
1秒前
Vesper完成签到 ,获得积分10
1秒前
动人的向松完成签到 ,获得积分10
2秒前
丘比特应助guozizi采纳,获得30
2秒前
英俊的铭应助guozizi采纳,获得10
2秒前
情怀应助guozizi采纳,获得10
2秒前
Ava应助guozizi采纳,获得10
2秒前
上官老黑发布了新的文献求助10
4秒前
6昂完成签到 ,获得积分10
6秒前
aDou完成签到 ,获得积分10
10秒前
可爱的函函应助小胡萝白采纳,获得30
11秒前
栗子呢呢呢完成签到 ,获得积分10
11秒前
cherlie应助Cici采纳,获得10
12秒前
12秒前
Chaos完成签到 ,获得积分10
17秒前
鹿小新完成签到 ,获得积分0
17秒前
ewmmel完成签到 ,获得积分10
18秒前
上官老黑完成签到 ,获得积分10
20秒前
zhongu发布了新的文献求助10
20秒前
阔达静曼完成签到 ,获得积分10
22秒前
23秒前
24秒前
高屋建瓴完成签到,获得积分10
25秒前
孙成成完成签到 ,获得积分10
27秒前
yjy完成签到,获得积分10
27秒前
tosania发布了新的文献求助10
29秒前
CYL07完成签到 ,获得积分10
29秒前
爱窦完成签到 ,获得积分10
29秒前
Willer完成签到,获得积分10
30秒前
31秒前
Haki完成签到,获得积分10
34秒前
Lee完成签到 ,获得积分10
35秒前
流水z完成签到 ,获得积分10
36秒前
KK完成签到,获得积分10
37秒前
磊大彪完成签到 ,获得积分10
38秒前
babaoriley1发布了新的文献求助10
38秒前
CYC完成签到 ,获得积分10
39秒前
尹静涵完成签到 ,获得积分10
42秒前
忽远忽近的她完成签到 ,获得积分10
42秒前
庚朝年完成签到 ,获得积分10
44秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994675
求助须知:如何正确求助?哪些是违规求助? 3534926
关于积分的说明 11266808
捐赠科研通 3274773
什么是DOI,文献DOI怎么找? 1806467
邀请新用户注册赠送积分活动 883298
科研通“疑难数据库(出版商)”最低求助积分说明 809749