The ECMWF Ensemble Prediction System: Methodology and validation

集合预报 预测技巧 数据同化 数值天气预报 航程(航空) 相空间 数学 布里氏评分 气象学 计算机科学 应用数学 统计 物理 热力学 复合材料 材料科学
作者
Franco Molteni,Roberto Buizza,T. N. Palmer,Thomas Petroliagis
出处
期刊:Quarterly Journal of the Royal Meteorological Society [Wiley]
卷期号:122 (529): 73-119 被引量:1528
标识
DOI:10.1002/qj.49712252905
摘要

Abstract The European Centre for Medium‐Range Weather Forecasts (ECMWF) Ensemble Prediction System (EPS) is described. In addition to an unperturbed (control) forecast, each ensemble comprises 32 10‐day forecasts starting from initial conditions in which dynamically defined perturbations have been added to the operational analysis. The perturbations are constructed from singular vectors of a time‐evolution operator linearized around the short‐range‐forecast trajectory. These singular vectors approximately determine the most unstable phase‐space directions in the early part of the forecast period, and are estimated using a forward and adjoint linear version of the ECMWF numerical weather‐prediction model. An appropriate norm is chosen, and relationships between the structures of these singular vectors at initial time and patterns showing the sensitivity of short‐range forecast error to changes in the analysis are discussed. A methodology to perform a phase‐space rotation of the singular vectors is described, which generates hemispheric‐wide perturbations and renormalizes them according to analysis‐error estimates from the data‐assimilation system. The validation of the ensembles is given firstly in terms of scatter diagrams and contingency tables of ensemble spread and control‐forecast skill. The contingency tables are compared with those from a perfect‐model ensemble system; no significant differences are found in some cases. Brier scores for the probability of European flow clusters are presented, which indicate predictive skill up to forecast‐day 8 with respect to climatological probabilities. The dependence of these scores on flow‐dependent model errors is also discussed. Finally, ensemble‐member skill‐score distributions are presented, which confirm the overall satisfactory performance of the EPS, particularly in summer and autumn 1993. In winter, cases of poor performance over Europe were associated with the occurrence of a split westerly flow with a blocking high and/or a cut‐off low in the verifying analysis. Two cases are studied in detail, one having large ensemble dispersion, the other corresponding to a more predictable situation. The case studies are used to illustrate the range of ensemble products routinely disseminated to ECMWF Member States. These products include clusters of flow types, and probability fields of weather elements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
ZetianYang发布了新的文献求助10
2秒前
搜集达人应助知了采纳,获得10
3秒前
小屋完成签到,获得积分10
4秒前
回忆杀发布了新的文献求助10
5秒前
5秒前
lazysheep发布了新的文献求助30
6秒前
ding应助exist采纳,获得10
6秒前
7秒前
甄幻梦完成签到,获得积分10
8秒前
杀死那条鱼完成签到,获得积分10
8秒前
transition完成签到,获得积分10
9秒前
ossantu发布了新的文献求助10
10秒前
13秒前
欣慰的觅儿完成签到,获得积分10
14秒前
15秒前
清爽丹云完成签到,获得积分20
15秒前
龅牙苏完成签到,获得积分10
16秒前
17秒前
星辰大海应助豪士赋采纳,获得10
17秒前
乐医欧发布了新的文献求助10
18秒前
欢呼半山完成签到 ,获得积分10
18秒前
20秒前
20秒前
21秒前
ziwi发布了新的文献求助10
22秒前
25秒前
25秒前
小前途发布了新的文献求助10
26秒前
Wilddeer完成签到 ,获得积分10
26秒前
ZZY发布了新的文献求助10
27秒前
27秒前
破忒头发布了新的文献求助10
28秒前
29秒前
bkagyin应助沙世平采纳,获得10
31秒前
Lucifer给Lucifer的求助进行了留言
32秒前
32秒前
谨慎万天完成签到,获得积分20
33秒前
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745812
求助须知:如何正确求助?哪些是违规求助? 3288765
关于积分的说明 10060476
捐赠科研通 3004943
什么是DOI,文献DOI怎么找? 1650009
邀请新用户注册赠送积分活动 785662
科研通“疑难数据库(出版商)”最低求助积分说明 751204