The ECMWF Ensemble Prediction System: Methodology and validation

集合预报 预测技巧 数据同化 数值天气预报 航程(航空) 相空间 数学 布里氏评分 气象学 计算机科学 应用数学 统计 物理 热力学 复合材料 材料科学
作者
Franco Molteni,Roberto Buizza,T. N. Palmer,Thomas Petroliagis
出处
期刊:Quarterly Journal of the Royal Meteorological Society [Wiley]
卷期号:122 (529): 73-119 被引量:1528
标识
DOI:10.1002/qj.49712252905
摘要

Abstract The European Centre for Medium‐Range Weather Forecasts (ECMWF) Ensemble Prediction System (EPS) is described. In addition to an unperturbed (control) forecast, each ensemble comprises 32 10‐day forecasts starting from initial conditions in which dynamically defined perturbations have been added to the operational analysis. The perturbations are constructed from singular vectors of a time‐evolution operator linearized around the short‐range‐forecast trajectory. These singular vectors approximately determine the most unstable phase‐space directions in the early part of the forecast period, and are estimated using a forward and adjoint linear version of the ECMWF numerical weather‐prediction model. An appropriate norm is chosen, and relationships between the structures of these singular vectors at initial time and patterns showing the sensitivity of short‐range forecast error to changes in the analysis are discussed. A methodology to perform a phase‐space rotation of the singular vectors is described, which generates hemispheric‐wide perturbations and renormalizes them according to analysis‐error estimates from the data‐assimilation system. The validation of the ensembles is given firstly in terms of scatter diagrams and contingency tables of ensemble spread and control‐forecast skill. The contingency tables are compared with those from a perfect‐model ensemble system; no significant differences are found in some cases. Brier scores for the probability of European flow clusters are presented, which indicate predictive skill up to forecast‐day 8 with respect to climatological probabilities. The dependence of these scores on flow‐dependent model errors is also discussed. Finally, ensemble‐member skill‐score distributions are presented, which confirm the overall satisfactory performance of the EPS, particularly in summer and autumn 1993. In winter, cases of poor performance over Europe were associated with the occurrence of a split westerly flow with a blocking high and/or a cut‐off low in the verifying analysis. Two cases are studied in detail, one having large ensemble dispersion, the other corresponding to a more predictable situation. The case studies are used to illustrate the range of ensemble products routinely disseminated to ECMWF Member States. These products include clusters of flow types, and probability fields of weather elements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
vicky完成签到,获得积分10
刚刚
1秒前
1秒前
墨点完成签到 ,获得积分10
1秒前
Aurora完成签到,获得积分10
1秒前
共享精神应助东东亮采纳,获得10
1秒前
深情安青应助Loooong采纳,获得10
2秒前
Anthocyanidin完成签到,获得积分10
2秒前
3秒前
5秒前
CR发布了新的文献求助10
5秒前
许院士完成签到,获得积分10
5秒前
distinct发布了新的文献求助10
5秒前
传奇3应助小小溪采纳,获得10
5秒前
斯文败类应助哈哈采纳,获得10
6秒前
Jasper应助等待世平采纳,获得10
7秒前
云烟完成签到,获得积分10
7秒前
NexusExplorer应助嘟嘟采纳,获得10
8秒前
00完成签到,获得积分20
10秒前
10秒前
乐乐应助cz采纳,获得10
10秒前
ASIS完成签到,获得积分10
11秒前
十七应助光亮念文采纳,获得10
11秒前
11秒前
12秒前
郭文汇发布了新的文献求助10
12秒前
xwp关注了科研通微信公众号
13秒前
13秒前
leier完成签到,获得积分10
14秒前
情怀应助ASIS采纳,获得10
14秒前
15秒前
lzc完成签到 ,获得积分10
16秒前
十七应助过儿采纳,获得10
17秒前
肉丸子发布了新的文献求助10
17秒前
18秒前
18秒前
18秒前
19秒前
K珑完成签到,获得积分10
19秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 970
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
Toward personalized care for insomnia in the US Army: a machine learning model to predict response to cognitive behavioral therapy for insomnia 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3392136
求助须知:如何正确求助?哪些是违规求助? 3002953
关于积分的说明 8806661
捐赠科研通 2689710
什么是DOI,文献DOI怎么找? 1473217
科研通“疑难数据库(出版商)”最低求助积分说明 681447
邀请新用户注册赠送积分活动 674301