Study of Non-Preston Phenomena Induced from the Passivated Additives in Copper CMP

化学机械平面化 抛光 钝化 薄脆饼 泥浆 材料科学 磨料 蚀刻(微加工) 氧化物 氧化铜 纳米 冶金 复合材料 化学工程 纳米技术 图层(电子) 工程类
作者
Kei-Wei Chen,Ying–Lang Wang
出处
期刊:Journal of The Electrochemical Society [The Electrochemical Society]
卷期号:154 (1): H41-H41 被引量:39
标识
DOI:10.1149/1.2374942
摘要

The requirement for the superplanarization of interconnect nanotechnology beyond poses an urgent need to study the complicated behavior of copper CMP. It is common practice in advanced copper chemical mechanical planarization (CMP) polishing to add the inhibitor into the slurry to keep the copper surface perfect and smooth and to protect the copper surface from corrosion. It is beneficial to have the polishing pressure cushion between abrasives and wafer under the different pattern features and is most important to overcome the planarization limitation. This study describes the behavior of non-Preston's phenomena under the passivated additives (inhibitors) and develops a model to explain the mechanism of the passivated-and-oxidated kinetics with non-Preston's polishing, which explains the mechanism of copper surface reactions during polishing. Furthermore, our model shows that the three regions are due to different relationships between removal rate and polishing pressure. Three regions are characterized as the threshold, linear, and saturated zones, which are governed by the chemical etching, the depth of abrasive particles indent into the copper oxide, and the oxidation rate, respectively. Most of all, the removal rate change can be simulated and predicted by the ratio between the inhibitor and oxidizer concentrations. Therefore, this study does not only contribute the understanding of the non-Preston's behavior but also provides the model under the assumption of the sequential stacked films of passivation and oxide films on the copper surface. The potentiodynamic methods are employed to test the assumption used in the mechanism and model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助凉风有信9527采纳,获得10
刚刚
LEMON发布了新的文献求助20
1秒前
炜大的我完成签到,获得积分10
1秒前
haimianbaobao发布了新的文献求助10
1秒前
传奇3应助研友_nPoXoL采纳,获得10
1秒前
lpp完成签到,获得积分10
1秒前
1秒前
ww发布了新的文献求助10
1秒前
22发布了新的文献求助10
2秒前
zhui发布了新的文献求助10
2秒前
3秒前
Jenny应助哈哈哈哈采纳,获得10
4秒前
笨笨芯应助Miracle采纳,获得10
4秒前
研友_LJGpan完成签到,获得积分10
4秒前
xiaozhenA完成签到,获得积分10
4秒前
junzilan发布了新的文献求助10
4秒前
云澈发布了新的文献求助10
4秒前
Hello paper发布了新的文献求助20
5秒前
a111完成签到,获得积分10
5秒前
乐乐应助zzznznnn采纳,获得10
5秒前
哈哈完成签到,获得积分20
6秒前
阳光衣完成签到,获得积分0
6秒前
8秒前
苏兴龙关注了科研通微信公众号
8秒前
8秒前
脑洞疼应助谦让的含海采纳,获得10
8秒前
华华发布了新的文献求助10
8秒前
8秒前
Orange应助命运的X号采纳,获得10
8秒前
云澈完成签到,获得积分10
10秒前
风趣的觅山完成签到,获得积分10
10秒前
打打应助SCI采纳,获得50
10秒前
pinging应助Wang采纳,获得10
10秒前
10秒前
灵巧荆发布了新的文献求助10
11秒前
和谐续完成签到 ,获得积分10
11秒前
李健应助是天使呢采纳,获得10
11秒前
11秒前
12秒前
香菜兔子完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794