On the Surprising Behavior of Distance Metrics in High Dimensional Space

维数之咒 欧几里德距离 计算机科学 土方工程距离 最近邻搜索 聚类分析 度量空间 欧几里得空间 k-最近邻算法 内在维度 搜索引擎索引 公制(单位) 规范(哲学) 距离测量 数学 理论计算机科学 算法 数据挖掘 人工智能 离散数学 组合数学 经济 运营管理 政治学 法学
作者
Charų C. Aggarwal,Alexander Hinneburg,Daniel A. Keim
出处
期刊:Lecture Notes in Computer Science 卷期号:: 420-434 被引量:1906
标识
DOI:10.1007/3-540-44503-x_27
摘要

In recent years, the effect of the curse of high dimensionality has been studied in great detail on several problems such as clustering, nearest neighbor search, and indexing. In high dimensional space the data becomes sparse, and traditional indexing and algorithmic techniques fail from a effciency and/or effectiveness perspective. Recent research results show that in high dimensional space, the concept of proximity, distance or nearest neighbor may not even be qualitatively meaningful. In this paper, we view the dimensionality curse from the point of view of the distance metrics which are used to measure the similarity between objects. We specifically examine the behavior of the commonly used L k norm and show that the problem of meaningfulness in high dimensionality is sensitive to the value of k. For example, this means that the Manhattan distance metric L(1 norm) is consistently more preferable than the Euclidean distance metric L(2 norm) for high dimensional data mining applications. Using the intuition derived from our analysis, we introduce and examine a natural extension of the L k norm to fractional distance metrics. We show that the fractional distance metric provides more meaningful results both from the theoretical and empirical perspective. The results show that fractional distance metrics can significantly improve the effectiveness of standard clustering algorithms such as the k-means algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhanyusun完成签到,获得积分20
刚刚
bryce发布了新的文献求助10
刚刚
aa发布了新的文献求助10
1秒前
1秒前
cuberblue发布了新的文献求助10
1秒前
情怀应助easymoney采纳,获得10
2秒前
起朱楼应助阿辉采纳,获得20
2秒前
夏天不回来完成签到,获得积分10
2秒前
乐乐应助lai采纳,获得10
2秒前
3秒前
3秒前
小海绵完成签到,获得积分10
4秒前
4秒前
perway发布了新的文献求助10
5秒前
蘇尼Ai发布了新的文献求助10
5秒前
yyy发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
bryce完成签到,获得积分10
6秒前
7秒前
fox完成签到 ,获得积分10
7秒前
JamesPei应助大萌采纳,获得10
7秒前
singber完成签到,获得积分10
7秒前
8秒前
lalala发布了新的文献求助10
8秒前
luoluo完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
复活发布了新的文献求助10
10秒前
明亮的小蘑菇应助LIO采纳,获得30
10秒前
10秒前
英俊的铭应助猪猪hero采纳,获得10
10秒前
10秒前
木子西发布了新的文献求助10
11秒前
11秒前
12秒前
lin发布了新的文献求助10
12秒前
刘振岁完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952008
求助须知:如何正确求助?哪些是违规求助? 3497414
关于积分的说明 11087298
捐赠科研通 3228031
什么是DOI,文献DOI怎么找? 1784626
邀请新用户注册赠送积分活动 868824
科研通“疑难数据库(出版商)”最低求助积分说明 801198