Accurate identification of Parkinson’s disease by distinctive features and ensemble decision trees

步态 决策树 物理医学与康复 标准差 数学 步态分析 帕金森病 计算机科学 模式识别(心理学) 人工智能 统计 医学 疾病 病理
作者
Huan Zhao,Junyi Cao,Ruixue Wang,Yaguo Lei,Wei‐Hsin Liao,Hongmei Cao
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:69: 102860-102860 被引量:9
标识
DOI:10.1016/j.bspc.2021.102860
摘要

Parkinson’s disease (PD) is a progressive neurological disorder that primarily leads to a series of motor impairments. Therefore, human gait patterns and information obtained from various sensors are employed to extract distinctive features for recognizing the difference between healthy controls and PD patients. However, improper analysis of these gait symptoms may mislead the diagnosis of PD due to gradually progressive characteristics of gait disorders. Moreover, individual differences of measuring signals are often preferable to the gait intrinsic changes induced by PD. To deal with those issues, the mean, coefficient variance (CV), and asymmetry index (AI) of temporal, VGRF/BW based, and ED-based features are extracted and compared by the violin plot and Mann-Whitney U-Test to find the distinctive features and discernible changes of the PD gait. Moreover, ensemble decision trees is proposed for accurate PD diagnosis. The ensemble decision trees with features from time, VGRF/BW, and ED are tested and evaluated by the prediction accuracy. Results show that based on the mean, CV, and AI of VGRF/BW at both posterior, inside and outside heel, inside and outside arch, inside and outside sole, toe, and the total force of left and right, the proposed ensemble tree method achieves a mean accuracy of 99.52% with a standard deviation of 0.10%. The distinctive features and accurate diagnosis will be helpful for the home-based and continuous monitoring to improve treatment and therapy of PD patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小张张发布了新的文献求助10
刚刚
乐乐应助YAN采纳,获得10
1秒前
迷惘墨香完成签到 ,获得积分10
2秒前
2秒前
Cynthia发布了新的文献求助30
2秒前
共享精神应助shenyanlei采纳,获得10
3秒前
wwww发布了新的文献求助10
3秒前
蔡菜菜完成签到,获得积分10
4秒前
852应助小余采纳,获得10
4秒前
饱满秋完成签到,获得积分10
5秒前
夜白发布了新的文献求助20
5秒前
搜集达人应助明月清风采纳,获得10
5秒前
希夷发布了新的文献求助10
6秒前
6秒前
爆米花应助通~采纳,获得10
6秒前
苏靖完成签到,获得积分10
6秒前
luoyutian发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
科研通AI5应助猪猪采纳,获得10
7秒前
7秒前
海绵体宝宝应助an采纳,获得10
8秒前
wwww完成签到,获得积分10
8秒前
8秒前
桐桐应助柔弱凡松采纳,获得10
8秒前
爆米花应助丶呆久自然萌采纳,获得10
9秒前
9秒前
wanyanjin应助流云采纳,获得10
9秒前
心花怒放发布了新的文献求助10
10秒前
DrYang发布了新的文献求助10
10秒前
10秒前
跑在颖完成签到,获得积分20
10秒前
希望天下0贩的0应助Jackson采纳,获得10
10秒前
徐徐发布了新的文献求助10
11秒前
落花生完成签到,获得积分10
11秒前
y123完成签到 ,获得积分10
11秒前
mnm完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762