亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Accurate identification of Parkinson’s disease by distinctive features and ensemble decision trees

步态 决策树 物理医学与康复 标准差 数学 步态分析 帕金森病 计算机科学 模式识别(心理学) 人工智能 统计 医学 疾病 病理
作者
Huan Zhao,Junyi Cao,Ruixue Wang,Yaguo Lei,Wei‐Hsin Liao,Hongmei Cao
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:69: 102860-102860 被引量:9
标识
DOI:10.1016/j.bspc.2021.102860
摘要

Parkinson’s disease (PD) is a progressive neurological disorder that primarily leads to a series of motor impairments. Therefore, human gait patterns and information obtained from various sensors are employed to extract distinctive features for recognizing the difference between healthy controls and PD patients. However, improper analysis of these gait symptoms may mislead the diagnosis of PD due to gradually progressive characteristics of gait disorders. Moreover, individual differences of measuring signals are often preferable to the gait intrinsic changes induced by PD. To deal with those issues, the mean, coefficient variance (CV), and asymmetry index (AI) of temporal, VGRF/BW based, and ED-based features are extracted and compared by the violin plot and Mann-Whitney U-Test to find the distinctive features and discernible changes of the PD gait. Moreover, ensemble decision trees is proposed for accurate PD diagnosis. The ensemble decision trees with features from time, VGRF/BW, and ED are tested and evaluated by the prediction accuracy. Results show that based on the mean, CV, and AI of VGRF/BW at both posterior, inside and outside heel, inside and outside arch, inside and outside sole, toe, and the total force of left and right, the proposed ensemble tree method achieves a mean accuracy of 99.52% with a standard deviation of 0.10%. The distinctive features and accurate diagnosis will be helpful for the home-based and continuous monitoring to improve treatment and therapy of PD patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助感性的靖仇采纳,获得10
刚刚
Never完成签到 ,获得积分10
3秒前
9秒前
14秒前
Picopy完成签到,获得积分10
52秒前
子平完成签到 ,获得积分0
1分钟前
1分钟前
苏黎沫发布了新的文献求助10
1分钟前
无情的听莲完成签到,获得积分10
2分钟前
赘婿应助苏黎沫采纳,获得10
2分钟前
3分钟前
乐乐应助远行客HB采纳,获得10
3分钟前
喜悦的小土豆完成签到 ,获得积分10
3分钟前
3分钟前
lsl完成签到 ,获得积分10
3分钟前
3分钟前
可爱的函函应助往复采纳,获得10
4分钟前
4分钟前
mark完成签到,获得积分10
4分钟前
义气的猫咪完成签到,获得积分10
5分钟前
CodeCraft应助xuan采纳,获得10
5分钟前
5分钟前
xuan发布了新的文献求助10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
科研通AI6应助xys采纳,获得10
5分钟前
pigff发布了新的社区帖子
5分钟前
6分钟前
6分钟前
发不出sci的完成签到,获得积分10
6分钟前
杨横发布了新的文献求助10
6分钟前
GPTea应助幺幺采纳,获得20
7分钟前
ceeray23应助科研通管家采纳,获得10
7分钟前
耳东陈完成签到 ,获得积分10
8分钟前
虾青素给czw的求助进行了留言
8分钟前
JamesPei应助杨横采纳,获得10
8分钟前
8分钟前
DDIAO发布了新的文献求助10
8分钟前
又又完成签到 ,获得积分10
9分钟前
sujiaoziemo发布了新的文献求助10
9分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5199123
求助须知:如何正确求助?哪些是违规求助? 4379842
关于积分的说明 13638572
捐赠科研通 4236170
什么是DOI,文献DOI怎么找? 2323884
邀请新用户注册赠送积分活动 1321840
关于科研通互助平台的介绍 1273123