清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Accurate identification of Parkinson’s disease by distinctive features and ensemble decision trees

步态 决策树 物理医学与康复 标准差 数学 步态分析 帕金森病 计算机科学 模式识别(心理学) 人工智能 统计 医学 疾病 病理
作者
Huan Zhao,Junyi Cao,Ruixue Wang,Yaguo Lei,Wei‐Hsin Liao,Hongmei Cao
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:69: 102860-102860 被引量:9
标识
DOI:10.1016/j.bspc.2021.102860
摘要

Parkinson’s disease (PD) is a progressive neurological disorder that primarily leads to a series of motor impairments. Therefore, human gait patterns and information obtained from various sensors are employed to extract distinctive features for recognizing the difference between healthy controls and PD patients. However, improper analysis of these gait symptoms may mislead the diagnosis of PD due to gradually progressive characteristics of gait disorders. Moreover, individual differences of measuring signals are often preferable to the gait intrinsic changes induced by PD. To deal with those issues, the mean, coefficient variance (CV), and asymmetry index (AI) of temporal, VGRF/BW based, and ED-based features are extracted and compared by the violin plot and Mann-Whitney U-Test to find the distinctive features and discernible changes of the PD gait. Moreover, ensemble decision trees is proposed for accurate PD diagnosis. The ensemble decision trees with features from time, VGRF/BW, and ED are tested and evaluated by the prediction accuracy. Results show that based on the mean, CV, and AI of VGRF/BW at both posterior, inside and outside heel, inside and outside arch, inside and outside sole, toe, and the total force of left and right, the proposed ensemble tree method achieves a mean accuracy of 99.52% with a standard deviation of 0.10%. The distinctive features and accurate diagnosis will be helpful for the home-based and continuous monitoring to improve treatment and therapy of PD patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助读书的时候采纳,获得30
4秒前
玛卡巴卡爱吃饭完成签到 ,获得积分10
4秒前
17秒前
17秒前
热情依白应助读书的时候采纳,获得30
21秒前
送你一匹马完成签到,获得积分10
21秒前
meeteryu完成签到,获得积分10
30秒前
36秒前
38秒前
大医仁心完成签到 ,获得积分10
41秒前
48秒前
52秒前
53秒前
53秒前
Criminology34应助读书的时候采纳,获得10
53秒前
56秒前
多啦啦发布了新的文献求助30
57秒前
59秒前
Ruogu完成签到,获得积分10
59秒前
阿泽发布了新的文献求助10
59秒前
量子星尘发布了新的文献求助10
1分钟前
清脆如娆完成签到 ,获得积分10
1分钟前
搜集达人应助多啦啦采纳,获得10
1分钟前
热情依白应助读书的时候采纳,获得10
1分钟前
佳宝(不可以喝但能吃完成签到,获得积分10
1分钟前
领导范儿应助包容山灵采纳,获得30
1分钟前
1分钟前
1分钟前
1分钟前
热情依白应助读书的时候采纳,获得10
1分钟前
1分钟前
ccj完成签到,获得积分20
1分钟前
1分钟前
ccj发布了新的文献求助10
1分钟前
我是笨蛋完成签到 ,获得积分10
2分钟前
科研通AI2S应助读书的时候采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
hhhpass应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5688129
求助须知:如何正确求助?哪些是违规求助? 5063718
关于积分的说明 15193691
捐赠科研通 4846465
什么是DOI,文献DOI怎么找? 2598868
邀请新用户注册赠送积分活动 1550976
关于科研通互助平台的介绍 1509573