Intratumoral analysis of digital breast tomosynthesis for predicting the Ki‐67 level in breast cancer: A multi‐center radiomics study

乳腺癌 医学 RSS 接收机工作特性 无线电技术 核医学 队列 人口 人工智能 放射科 癌症 内科学 计算机科学 环境卫生 操作系统
作者
Tao Jiang,Wenyan Jiang,Shijie Chang,Hongbo Wang,Shuxian Niu,Zhibin Yue,Huazhe Yang,Xiaoyu Wang,Nannan Zhao,Siqi Fang,Yahong Luo,Xiran Jiang
出处
期刊:Medical Physics [Wiley]
卷期号:49 (1): 219-230 被引量:11
标识
DOI:10.1002/mp.15392
摘要

To non-invasively evaluate the Ki-67 level in digital breast tomosynthesis (DBT) images of breast cancer (BC) patients based on subregional radiomics.A total of 266 patients who underwent DBT scans were consecutively enrolled at two centers, between September 2017 and September 2021. The whole tumor region was partitioned into various intratumoral subregions, based on individual- and population-level clustering. Handcrafted radiomics and deep learning-based features were extracted from the subregions and from the whole tumor region, and were selected by least absolute shrinkage and selection operator (LASSO) regression, yielding radiomics signatures (RSs). The area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity were calculated to assess the developed RSs.Each breast tumor region was partitioned into an inner subregion (S1) and a marginal subregion (S2). The RSs derived from S1 always generated higher AUCs compared with those from S2 or from the whole tumor region (W), for the external validation cohort (AUCs, S1 vs. W, handcrafted RSs: 0.583 [95% CI, 0.429-0.727] vs. 0.559 [95% CI, 0.405-0.705], p-value: 0.920; deep RSs: 0.670 [95% CI, 0.516-0.802] vs. 0.551 [95% CI, 0.397-0.698], p-value: 0.776). The fusion RSs, combining handcrafted and deep learning-based features derived from S1, yielded the highest AUCs of 0.820 (95% CI, 0.714-0.900) and 0.792 (95% CI, 0.647-0.897) for the internal and external validation cohorts, respectively.The subregional radiomics approach can accurately predict the Ki-67 level based on DBT data; thus, it may be used as a potential non-invasive tool for preoperative treatment planning in BC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
大葡萄发布了新的文献求助10
2秒前
爆米花应助hhhhhhhhh采纳,获得10
4秒前
寒冷天亦完成签到,获得积分10
6秒前
adam完成签到,获得积分10
6秒前
6秒前
哈哈完成签到,获得积分10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
7秒前
ED应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
7秒前
11秒前
ZDddd发布了新的文献求助20
12秒前
世纪完成签到,获得积分10
12秒前
鹤轸完成签到,获得积分10
14秒前
大葡萄完成签到,获得积分10
18秒前
18秒前
RJX完成签到,获得积分20
21秒前
猪肉铺完成签到,获得积分10
21秒前
王欧尼发布了新的文献求助10
22秒前
htx发布了新的文献求助10
23秒前
HEHNJJ完成签到,获得积分10
23秒前
24秒前
lll应助任性半鬼采纳,获得10
27秒前
龙牙发布了新的文献求助10
27秒前
Jenny发布了新的文献求助10
27秒前
kaier完成签到 ,获得积分10
28秒前
科研鸟发布了新的文献求助10
28秒前
vvvv完成签到,获得积分10
29秒前
高兴的易形完成签到 ,获得积分10
30秒前
31秒前
爆米花应助牛牛眉目采纳,获得10
32秒前
35秒前
博士加油完成签到,获得积分10
35秒前
芳蔼发布了新的文献求助10
36秒前
Luna爱科研完成签到 ,获得积分10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966285
求助须知:如何正确求助?哪些是违规求助? 3511697
关于积分的说明 11159270
捐赠科研通 3246284
什么是DOI,文献DOI怎么找? 1793339
邀请新用户注册赠送积分活动 874354
科研通“疑难数据库(出版商)”最低求助积分说明 804351