Intratumoral analysis of digital breast tomosynthesis for predicting the Ki‐67 level in breast cancer: A multi‐center radiomics study

乳腺癌 医学 RSS 接收机工作特性 无线电技术 核医学 队列 人口 人工智能 放射科 癌症 内科学 计算机科学 环境卫生 操作系统
作者
Tao Jiang,Wenyan Jiang,Shijie Chang,Hongbo Wang,Shuxian Niu,Zhibin Yue,Huazhe Yang,Xiaoyu Wang,Nannan Zhao,Siqi Fang,Yahong Luo,Xiran Jiang
出处
期刊:Medical Physics [Wiley]
卷期号:49 (1): 219-230 被引量:11
标识
DOI:10.1002/mp.15392
摘要

To non-invasively evaluate the Ki-67 level in digital breast tomosynthesis (DBT) images of breast cancer (BC) patients based on subregional radiomics.A total of 266 patients who underwent DBT scans were consecutively enrolled at two centers, between September 2017 and September 2021. The whole tumor region was partitioned into various intratumoral subregions, based on individual- and population-level clustering. Handcrafted radiomics and deep learning-based features were extracted from the subregions and from the whole tumor region, and were selected by least absolute shrinkage and selection operator (LASSO) regression, yielding radiomics signatures (RSs). The area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity were calculated to assess the developed RSs.Each breast tumor region was partitioned into an inner subregion (S1) and a marginal subregion (S2). The RSs derived from S1 always generated higher AUCs compared with those from S2 or from the whole tumor region (W), for the external validation cohort (AUCs, S1 vs. W, handcrafted RSs: 0.583 [95% CI, 0.429-0.727] vs. 0.559 [95% CI, 0.405-0.705], p-value: 0.920; deep RSs: 0.670 [95% CI, 0.516-0.802] vs. 0.551 [95% CI, 0.397-0.698], p-value: 0.776). The fusion RSs, combining handcrafted and deep learning-based features derived from S1, yielded the highest AUCs of 0.820 (95% CI, 0.714-0.900) and 0.792 (95% CI, 0.647-0.897) for the internal and external validation cohorts, respectively.The subregional radiomics approach can accurately predict the Ki-67 level based on DBT data; thus, it may be used as a potential non-invasive tool for preoperative treatment planning in BC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxl完成签到,获得积分20
刚刚
哆1627_完成签到,获得积分10
刚刚
Egoist完成签到,获得积分10
1秒前
yangzhang完成签到,获得积分10
1秒前
1秒前
研友_Lw7OvL完成签到 ,获得积分10
1秒前
谢大喵发布了新的文献求助10
1秒前
1秒前
2秒前
柳絮旭完成签到 ,获得积分10
2秒前
大个应助xh采纳,获得10
2秒前
Yee涵完成签到,获得积分10
2秒前
joy完成签到 ,获得积分10
2秒前
大魁完成签到,获得积分10
3秒前
屁王发布了新的文献求助10
4秒前
4秒前
大胖龙发布了新的文献求助10
4秒前
暮叆发布了新的文献求助10
4秒前
怕孤单的易形完成签到,获得积分10
5秒前
你好完成签到,获得积分10
5秒前
xiezizai完成签到,获得积分10
6秒前
楚江南完成签到,获得积分10
6秒前
chenbin完成签到,获得积分10
7秒前
7秒前
好运连连发布了新的文献求助10
7秒前
SherlockJia发布了新的文献求助10
7秒前
包容渊思发布了新的文献求助10
8秒前
是我呀小夏完成签到 ,获得积分10
8秒前
9秒前
9秒前
88mgsure完成签到,获得积分10
9秒前
10秒前
TaiLongYang完成签到,获得积分10
10秒前
汐颜紫雨应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
JamesPei应助屁王采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
11秒前
komorebi完成签到 ,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5256776
求助须知:如何正确求助?哪些是违规求助? 4418917
关于积分的说明 13754171
捐赠科研通 4292127
什么是DOI,文献DOI怎么找? 2355327
邀请新用户注册赠送积分活动 1351803
关于科研通互助平台的介绍 1312558