Intratumoral analysis of digital breast tomosynthesis for predicting the Ki‐67 level in breast cancer: A multi‐center radiomics study

乳腺癌 医学 RSS 接收机工作特性 无线电技术 核医学 队列 人口 人工智能 放射科 癌症 内科学 计算机科学 环境卫生 操作系统
作者
Tao Jiang,Wenyan Jiang,Shijie Chang,Hongbo Wang,Shuxian Niu,Zhibin Yue,Huazhe Yang,Xiaoyu Wang,Nannan Zhao,Siqi Fang,Yahong Luo,Xiran Jiang
出处
期刊:Medical Physics [Wiley]
卷期号:49 (1): 219-230 被引量:11
标识
DOI:10.1002/mp.15392
摘要

To non-invasively evaluate the Ki-67 level in digital breast tomosynthesis (DBT) images of breast cancer (BC) patients based on subregional radiomics.A total of 266 patients who underwent DBT scans were consecutively enrolled at two centers, between September 2017 and September 2021. The whole tumor region was partitioned into various intratumoral subregions, based on individual- and population-level clustering. Handcrafted radiomics and deep learning-based features were extracted from the subregions and from the whole tumor region, and were selected by least absolute shrinkage and selection operator (LASSO) regression, yielding radiomics signatures (RSs). The area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity were calculated to assess the developed RSs.Each breast tumor region was partitioned into an inner subregion (S1) and a marginal subregion (S2). The RSs derived from S1 always generated higher AUCs compared with those from S2 or from the whole tumor region (W), for the external validation cohort (AUCs, S1 vs. W, handcrafted RSs: 0.583 [95% CI, 0.429-0.727] vs. 0.559 [95% CI, 0.405-0.705], p-value: 0.920; deep RSs: 0.670 [95% CI, 0.516-0.802] vs. 0.551 [95% CI, 0.397-0.698], p-value: 0.776). The fusion RSs, combining handcrafted and deep learning-based features derived from S1, yielded the highest AUCs of 0.820 (95% CI, 0.714-0.900) and 0.792 (95% CI, 0.647-0.897) for the internal and external validation cohorts, respectively.The subregional radiomics approach can accurately predict the Ki-67 level based on DBT data; thus, it may be used as a potential non-invasive tool for preoperative treatment planning in BC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助东方向露采纳,获得30
刚刚
刚刚
彭于晏应助luochunsheng采纳,获得10
1秒前
longer发布了新的文献求助10
2秒前
3秒前
南风未起发布了新的文献求助10
3秒前
英姑应助优美紫槐采纳,获得10
3秒前
哭泣又柔发布了新的文献求助10
3秒前
4秒前
LG发布了新的文献求助10
4秒前
梦想成为高知悍妇完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
8秒前
浪子应助火星上送终采纳,获得10
8秒前
10秒前
10秒前
失眠的契完成签到,获得积分10
11秒前
11秒前
11秒前
英俊的铭应助南风未起采纳,获得10
12秒前
Youlu发布了新的文献求助10
14秒前
哭泣又柔完成签到,获得积分10
15秒前
Miss-Li完成签到,获得积分10
15秒前
16秒前
16秒前
wfengfengw发布了新的文献求助10
16秒前
16秒前
KerwinYang发布了新的文献求助10
17秒前
17秒前
18秒前
彭于晏应助Youlu采纳,获得10
18秒前
共享精神应助江上采纳,获得10
19秒前
19秒前
摇匀发布了新的文献求助10
20秒前
duoduoyishan发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
21秒前
DAIXI761419完成签到,获得积分10
21秒前
zxx完成签到,获得积分10
21秒前
Jasper应助益生菌小哥采纳,获得10
21秒前
xc完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720530
求助须知:如何正确求助?哪些是违规求助? 5260834
关于积分的说明 15291524
捐赠科研通 4869955
什么是DOI,文献DOI怎么找? 2615129
邀请新用户注册赠送积分活动 1565084
关于科研通互助平台的介绍 1522191