Intratumoral analysis of digital breast tomosynthesis for predicting the Ki‐67 level in breast cancer: A multi‐center radiomics study

乳腺癌 医学 RSS 接收机工作特性 无线电技术 核医学 队列 人口 人工智能 放射科 癌症 内科学 计算机科学 环境卫生 操作系统
作者
Tao Jiang,Wenyan Jiang,Shijie Chang,Hongbo Wang,Shuxian Niu,Zhibin Yue,Huazhe Yang,Xiaoyu Wang,Nannan Zhao,Siqi Fang,Yahong Luo,Xiran Jiang
出处
期刊:Medical Physics [Wiley]
卷期号:49 (1): 219-230 被引量:11
标识
DOI:10.1002/mp.15392
摘要

To non-invasively evaluate the Ki-67 level in digital breast tomosynthesis (DBT) images of breast cancer (BC) patients based on subregional radiomics.A total of 266 patients who underwent DBT scans were consecutively enrolled at two centers, between September 2017 and September 2021. The whole tumor region was partitioned into various intratumoral subregions, based on individual- and population-level clustering. Handcrafted radiomics and deep learning-based features were extracted from the subregions and from the whole tumor region, and were selected by least absolute shrinkage and selection operator (LASSO) regression, yielding radiomics signatures (RSs). The area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity were calculated to assess the developed RSs.Each breast tumor region was partitioned into an inner subregion (S1) and a marginal subregion (S2). The RSs derived from S1 always generated higher AUCs compared with those from S2 or from the whole tumor region (W), for the external validation cohort (AUCs, S1 vs. W, handcrafted RSs: 0.583 [95% CI, 0.429-0.727] vs. 0.559 [95% CI, 0.405-0.705], p-value: 0.920; deep RSs: 0.670 [95% CI, 0.516-0.802] vs. 0.551 [95% CI, 0.397-0.698], p-value: 0.776). The fusion RSs, combining handcrafted and deep learning-based features derived from S1, yielded the highest AUCs of 0.820 (95% CI, 0.714-0.900) and 0.792 (95% CI, 0.647-0.897) for the internal and external validation cohorts, respectively.The subregional radiomics approach can accurately predict the Ki-67 level based on DBT data; thus, it may be used as a potential non-invasive tool for preoperative treatment planning in BC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wybe完成签到,获得积分10
2秒前
李健的小迷弟应助jialin采纳,获得10
2秒前
BLJ完成签到,获得积分10
2秒前
fzzf发布了新的文献求助10
3秒前
liaodongjun发布了新的文献求助30
3秒前
4秒前
翻斗花园发布了新的文献求助10
4秒前
大仙完成签到,获得积分10
5秒前
冷傲书萱发布了新的文献求助10
5秒前
Auimes发布了新的文献求助10
6秒前
清脆的映天完成签到,获得积分20
6秒前
俏皮幻悲发布了新的文献求助10
6秒前
东哥发布了新的文献求助10
7秒前
棋士应助刘培恒采纳,获得10
7秒前
tyq完成签到,获得积分10
7秒前
天天快乐应助清脆安南采纳,获得10
7秒前
高兴的风华完成签到,获得积分10
7秒前
yznfly应助sy采纳,获得30
8秒前
8秒前
哈哈哈哈完成签到,获得积分20
8秒前
无辜飞风完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
ding应助黑yan采纳,获得10
11秒前
11秒前
顾矜应助坨坨采纳,获得10
11秒前
Lucas应助76采纳,获得10
12秒前
echo完成签到,获得积分10
14秒前
14秒前
14秒前
14秒前
15秒前
he完成签到 ,获得积分10
15秒前
体贴代容发布了新的文献求助10
15秒前
16秒前
你您发布了新的文献求助10
16秒前
坚定醉蓝完成签到,获得积分10
16秒前
勤劳的颦发布了新的文献求助10
17秒前
蓝天发布了新的文献求助10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Chemistry and Biochemistry: Research Progress Vol. 7 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684108
求助须知:如何正确求助?哪些是违规求助? 5035205
关于积分的说明 15183583
捐赠科研通 4843435
什么是DOI,文献DOI怎么找? 2596688
邀请新用户注册赠送积分活动 1549396
关于科研通互助平台的介绍 1507893