Intratumoral analysis of digital breast tomosynthesis for predicting the Ki‐67 level in breast cancer: A multi‐center radiomics study

乳腺癌 医学 RSS 接收机工作特性 无线电技术 核医学 队列 人口 人工智能 放射科 癌症 内科学 计算机科学 环境卫生 操作系统
作者
Tao Jiang,Wenyan Jiang,Shijie Chang,Hongbo Wang,Shuxian Niu,Zhibin Yue,Huazhe Yang,Xiaoyu Wang,Nannan Zhao,Siqi Fang,Yahong Luo,Xiran Jiang
出处
期刊:Medical Physics [Wiley]
卷期号:49 (1): 219-230 被引量:11
标识
DOI:10.1002/mp.15392
摘要

To non-invasively evaluate the Ki-67 level in digital breast tomosynthesis (DBT) images of breast cancer (BC) patients based on subregional radiomics.A total of 266 patients who underwent DBT scans were consecutively enrolled at two centers, between September 2017 and September 2021. The whole tumor region was partitioned into various intratumoral subregions, based on individual- and population-level clustering. Handcrafted radiomics and deep learning-based features were extracted from the subregions and from the whole tumor region, and were selected by least absolute shrinkage and selection operator (LASSO) regression, yielding radiomics signatures (RSs). The area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity were calculated to assess the developed RSs.Each breast tumor region was partitioned into an inner subregion (S1) and a marginal subregion (S2). The RSs derived from S1 always generated higher AUCs compared with those from S2 or from the whole tumor region (W), for the external validation cohort (AUCs, S1 vs. W, handcrafted RSs: 0.583 [95% CI, 0.429-0.727] vs. 0.559 [95% CI, 0.405-0.705], p-value: 0.920; deep RSs: 0.670 [95% CI, 0.516-0.802] vs. 0.551 [95% CI, 0.397-0.698], p-value: 0.776). The fusion RSs, combining handcrafted and deep learning-based features derived from S1, yielded the highest AUCs of 0.820 (95% CI, 0.714-0.900) and 0.792 (95% CI, 0.647-0.897) for the internal and external validation cohorts, respectively.The subregional radiomics approach can accurately predict the Ki-67 level based on DBT data; thus, it may be used as a potential non-invasive tool for preoperative treatment planning in BC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
curtisness应助喜悦的虔采纳,获得10
2秒前
00完成签到 ,获得积分10
3秒前
清爽夜雪发布了新的文献求助10
4秒前
科学家发布了新的文献求助10
4秒前
zyyyy发布了新的文献求助10
4秒前
李健应助愉快的问凝采纳,获得10
4秒前
LOOW完成签到,获得积分10
5秒前
7秒前
8秒前
所所应助清爽夜雪采纳,获得10
9秒前
八宝粥完成签到,获得积分10
11秒前
顺利小陈发布了新的文献求助10
12秒前
TS完成签到,获得积分10
13秒前
14秒前
15秒前
17秒前
19秒前
Lucas应助BIGer采纳,获得10
21秒前
天天快乐应助zyyyy采纳,获得10
21秒前
善学以致用应助顺利小陈采纳,获得10
22秒前
22秒前
生椰拿铁发布了新的文献求助10
22秒前
酷酷代芙完成签到,获得积分20
24秒前
25秒前
26秒前
李爱国应助甄冰海采纳,获得10
27秒前
27秒前
bb发布了新的文献求助10
28秒前
28秒前
充电宝应助小陈采纳,获得10
28秒前
orixero应助wwww采纳,获得20
29秒前
Hello应助zyyyy采纳,获得10
29秒前
30秒前
31秒前
tomorrow完成签到 ,获得积分10
31秒前
酷酷代芙发布了新的文献求助50
32秒前
zyyyy发布了新的文献求助10
35秒前
HGQ应助科研通管家采纳,获得10
36秒前
脑洞疼应助科研通管家采纳,获得10
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Discourse, Identities and Genres in Corporate Communication 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3359630
求助须知:如何正确求助?哪些是违规求助? 2982355
关于积分的说明 8703259
捐赠科研通 2664021
什么是DOI,文献DOI怎么找? 1458787
科研通“疑难数据库(出版商)”最低求助积分说明 675243
邀请新用户注册赠送积分活动 666331