Intratumoral analysis of digital breast tomosynthesis for predicting the Ki‐67 level in breast cancer: A multi‐center radiomics study

乳腺癌 医学 RSS 接收机工作特性 无线电技术 核医学 队列 人口 人工智能 放射科 癌症 内科学 计算机科学 环境卫生 操作系统
作者
Tao Jiang,Wenyan Jiang,Shijie Chang,Hongbo Wang,Shuxian Niu,Zhibin Yue,Huazhe Yang,Xiaoyu Wang,Nannan Zhao,Siqi Fang,Yahong Luo,Xiran Jiang
出处
期刊:Medical Physics [Wiley]
卷期号:49 (1): 219-230 被引量:11
标识
DOI:10.1002/mp.15392
摘要

To non-invasively evaluate the Ki-67 level in digital breast tomosynthesis (DBT) images of breast cancer (BC) patients based on subregional radiomics.A total of 266 patients who underwent DBT scans were consecutively enrolled at two centers, between September 2017 and September 2021. The whole tumor region was partitioned into various intratumoral subregions, based on individual- and population-level clustering. Handcrafted radiomics and deep learning-based features were extracted from the subregions and from the whole tumor region, and were selected by least absolute shrinkage and selection operator (LASSO) regression, yielding radiomics signatures (RSs). The area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity were calculated to assess the developed RSs.Each breast tumor region was partitioned into an inner subregion (S1) and a marginal subregion (S2). The RSs derived from S1 always generated higher AUCs compared with those from S2 or from the whole tumor region (W), for the external validation cohort (AUCs, S1 vs. W, handcrafted RSs: 0.583 [95% CI, 0.429-0.727] vs. 0.559 [95% CI, 0.405-0.705], p-value: 0.920; deep RSs: 0.670 [95% CI, 0.516-0.802] vs. 0.551 [95% CI, 0.397-0.698], p-value: 0.776). The fusion RSs, combining handcrafted and deep learning-based features derived from S1, yielded the highest AUCs of 0.820 (95% CI, 0.714-0.900) and 0.792 (95% CI, 0.647-0.897) for the internal and external validation cohorts, respectively.The subregional radiomics approach can accurately predict the Ki-67 level based on DBT data; thus, it may be used as a potential non-invasive tool for preoperative treatment planning in BC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助周周采纳,获得10
刚刚
微笑发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
1秒前
2秒前
不想干活应助banbeikele采纳,获得10
2秒前
4秒前
小蘑菇应助ws采纳,获得10
4秒前
典雅碧空应助dxs采纳,获得10
4秒前
不拿拿完成签到 ,获得积分10
4秒前
WXT发布了新的文献求助10
4秒前
不想干活应助乐观的镜子采纳,获得10
5秒前
酷炫依白发布了新的文献求助10
5秒前
5秒前
熠旅发布了新的文献求助10
5秒前
Superkai发布了新的文献求助10
5秒前
wwz发布了新的文献求助10
5秒前
傲娇黑夜发布了新的文献求助10
6秒前
6秒前
积极的夜蕾完成签到,获得积分10
6秒前
6秒前
牟白关注了科研通微信公众号
6秒前
东郭凝蝶发布了新的文献求助10
9秒前
李健应助扬泳正采纳,获得10
9秒前
huqiao发布了新的文献求助10
9秒前
jc2001完成签到,获得积分10
9秒前
开朗的钻石完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
酷炫依白完成签到,获得积分20
10秒前
hebiniannian发布了新的文献求助10
10秒前
10秒前
vchen0621发布了新的文献求助10
10秒前
Orange应助齐嘉懿采纳,获得10
10秒前
10秒前
善学以致用应助十一号采纳,获得10
12秒前
13秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4608373
求助须知:如何正确求助?哪些是违规求助? 4014956
关于积分的说明 12431782
捐赠科研通 3696131
什么是DOI,文献DOI怎么找? 2037842
邀请新用户注册赠送积分活动 1070949
科研通“疑难数据库(出版商)”最低求助积分说明 954875