Rapid detection of miRNA via development of consecutive adenines (polyA)-based electrochemical biosensors

检出限 化学 线性范围 生物传感器 电化学 DNA 环介导等温扩增 电极 色谱法 生物化学 物理化学
作者
Xiaoyu Hua,Jingjing Fan,Lingzhi Yang,Jun Wang,Yongqiang Wen,Lei Su,Xueji Zhang
出处
期刊:Biosensors and Bioelectronics [Elsevier]
卷期号:198: 113830-113830 被引量:23
标识
DOI:10.1016/j.bios.2021.113830
摘要

Herein, we report rapid electrochemical detection of miRNA let-7a based on a DNA probe consisting of a polyA and Fc-co-labeled harpin structure (the polyA-H probe). The polyA-H probe could be facilely immobilized on Au surfaces through the interactions between polyA and Au, followed by its pre-hybridization with a single strand (S1). The probe's surface density could be optimized for minimizing steric hindrance via changing the polyA block length. The target let-7a could be rapidly amplified via loop-mediated isothermal amplification (LAMP) with four simplified primers, followed by inducing the formation of dimeric i-motif (DIM) structure via H+-induced rapid folding of two C-rich sequences of motif strand 1 and strand 2. It was found that, after introducing the as-formed DIM to hybridize the S1, the immobilized polyA20-H probe could rapidly revert to its hairpin structure, sending out a turn-on electrochemical signal of the Fc. The total time for detecting the let-7a was around 80 min, obviously less than that of most of electrochemical DNA sensors reported previously. The biosensor showed a linear relationship of the current response to the let-7a in the range of 10 fM to 50 nM with a limit of detection (LOD) of 5.1 fM. Our biosensors were further tested using human serum spiked with the let-7a and the extracts of the breast adenocarcinoma cells spiked with and without the let-7a, respectively. Satisfied results were obtained. This study shows a potential promising future of development of electrochemical biosensors for rapid detection of miRNAs in the application of clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助lierikafei采纳,获得10
刚刚
CodeCraft应助Mp4采纳,获得10
刚刚
汉堡包应助chen采纳,获得10
刚刚
winterm发布了新的文献求助10
刚刚
1秒前
键华完成签到,获得积分10
1秒前
1秒前
neil完成签到,获得积分10
2秒前
彪壮的冰双完成签到,获得积分10
2秒前
领导范儿应助负责新筠采纳,获得10
3秒前
3秒前
3秒前
海锅的小迷妹完成签到,获得积分10
3秒前
4秒前
折木浮华发布了新的文献求助10
4秒前
ieeat完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
6秒前
顺利毕业完成签到,获得积分10
6秒前
q1010611084完成签到 ,获得积分10
6秒前
6秒前
7秒前
7秒前
小马甲应助甜甜不评采纳,获得10
7秒前
简一应助文件撤销了驳回
9秒前
研友_Zr5Dpn完成签到,获得积分20
9秒前
9秒前
羽翼发布了新的文献求助10
9秒前
atom发布了新的文献求助10
10秒前
11秒前
lierikafei发布了新的文献求助10
12秒前
12秒前
12秒前
再睡一夏完成签到,获得积分10
12秒前
YJX完成签到,获得积分20
12秒前
白玫瑰发布了新的文献求助30
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3512844
求助须知:如何正确求助?哪些是违规求助? 3095233
关于积分的说明 9227143
捐赠科研通 2790310
什么是DOI,文献DOI怎么找? 1531084
邀请新用户注册赠送积分活动 711292
科研通“疑难数据库(出版商)”最低求助积分说明 706724