Analyzing the use of artificial intelligence for the management of chronic obstructive pulmonary disease (COPD)

斯科普斯 奇纳 慢性阻塞性肺病 人工智能 医学 机器学习 肺病 梅德林 计算机科学 支持向量机 疾病 决策支持系统 重症监护医学 心理干预 病理 内科学 法学 精神科 政治学
作者
Alberto de Ramón-Fernández,Daniel Ruíz Fernández,Virgilio Gilart-Iglesias,Diego Marcos Jorquera
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:158: 104640-104640 被引量:20
标识
DOI:10.1016/j.ijmedinf.2021.104640
摘要

Chronic obstructive pulmonary disease (COPD) is a disease that causes airflow limitation to the lungs and has a high morbidity around the world. The objective of this study was to evaluate how artificial intelligence (AI) is being applied for the management of the disease, analyzing the objectives that are raised, the algorithms that are used and what results they offer. We conducted a scoping review following the Arksey and O'Malley (2005) and Levac et al. (2010) guidelines. Two reviewers independently searched, analyzed and extracted data from papers of five databases: Web of Science, PubMed, Scopus, Cinahl and Cochrane. To be included, the studies had to apply some AI techniques for the management of at least one stage of the COPD clinical process. In the event of any discrepancy between both reviewers, the criterion of a third reviewer prevailed. 380 papers were identified through database searches. After applying the exclusion criteria, 67 papers were included in the study. The studies were of a different nature and pursued a wide range of objectives, highlighting mainly those focused on the identification, classification and prevention of the disease. Neural nets, support vector machines and decision trees were the AI algorithms most commonly used. The mean and median values of all the performance metrics evaluated were between 80% and 90%. The results obtained show a growing interest in the development of medical applications that manage the different phases of the COPD clinical process, especially predictive models. According to the performance shown, these models could be a useful complementary tool in the decision-making by health specialists, although more high-quality ML studies are needed to endorse the findings of this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西奥牧马完成签到 ,获得积分10
2秒前
嗯嗯完成签到 ,获得积分10
4秒前
pp完成签到 ,获得积分10
5秒前
liufan完成签到 ,获得积分10
7秒前
buerzi完成签到,获得积分10
8秒前
wonwojo完成签到 ,获得积分10
9秒前
大园完成签到 ,获得积分10
13秒前
朵拉A梦完成签到,获得积分10
13秒前
白昼の月完成签到 ,获得积分0
26秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
CipherSage应助科研通管家采纳,获得10
26秒前
lasalu应助科研通管家采纳,获得10
26秒前
26秒前
jasmine完成签到 ,获得积分10
32秒前
廿三完成签到,获得积分10
37秒前
啾一口香菜完成签到 ,获得积分10
38秒前
谁家那小谁完成签到 ,获得积分10
43秒前
小波完成签到 ,获得积分10
44秒前
安静严青完成签到 ,获得积分10
47秒前
helen李完成签到 ,获得积分10
49秒前
jh完成签到 ,获得积分10
50秒前
看文献完成签到,获得积分0
50秒前
54秒前
qiancib202完成签到,获得积分10
56秒前
云帆完成签到,获得积分10
1分钟前
夜琉璃完成签到 ,获得积分10
1分钟前
Wenyu完成签到,获得积分10
1分钟前
1分钟前
烂漫映之完成签到 ,获得积分10
1分钟前
周周完成签到 ,获得积分10
1分钟前
1分钟前
Alisha完成签到,获得积分10
1分钟前
爱上学的小金完成签到 ,获得积分10
1分钟前
czj完成签到 ,获得积分0
1分钟前
LONG完成签到 ,获得积分10
1分钟前
科研欢完成签到 ,获得积分10
2分钟前
圆听听完成签到 ,获得积分10
2分钟前
charon完成签到 ,获得积分10
2分钟前
penguo应助紫熊采纳,获得10
2分钟前
cq_2完成签到,获得积分0
2分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212143
求助须知:如何正确求助?哪些是违规求助? 4388371
关于积分的说明 13663799
捐赠科研通 4248791
什么是DOI,文献DOI怎么找? 2331152
邀请新用户注册赠送积分活动 1328883
关于科研通互助平台的介绍 1282195