Characterization of front contact degradation in monocrystalline and multicrystalline silicon photovoltaic modules following damp heat exposure

单晶硅 材料科学 太阳能电池 光伏系统 X射线光电子能谱 晶体硅 扫描电子显微镜 降级(电信) 母线 表征(材料科学) 腐蚀 光电子学 电致发光 复合材料 纳米技术 图层(电子) 化学工程 电气工程 电子工程 工程类
作者
Nafis Iqbal,Dylan J. Colvin,Eric Schneller,Tamil S. Sakthivel,R. A. Ristau,Bryan D. Huey,Ben X. J. Yu,Jean‐Nicolas Jaubert,Alan J. Curran,Menghong Wang,Sudipta Seal,Roger H. French,Kristopher O. Davis
出处
期刊:Solar Energy Materials and Solar Cells [Elsevier]
卷期号:235: 111468-111468 被引量:31
标识
DOI:10.1016/j.solmat.2021.111468
摘要

Reliability and durability tests play a key role in the photovoltaic (PV) industry by minimizing potential failure risks for both existing and new cell and module technologies. In this work, a detailed study of contact degradation in monocrystalline and multicrystalline PV modules is performed. The modules are subjected to a sequence of damp heat (DH) exposures followed by electrical characterization after each step. Electroluminescence (EL) imaging shows different darkening patterns for monocrystalline modules compared to multicrystalline modules; the former shows darkening near the busbars and the latter shows it across virtually the entire cell surface. The primary loss mechanism is confirmed to be resistive after comparing the current-voltage (I–V) characteristics at each DH exposure step. Representative samples have been cored out from both the degraded modules and controls for materials characterization to gain further insights into the degradation mechanism. Top-down and cross-sectional scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and top-down high-resolution X-ray photoelectron spectroscopy (XPS) analysis performed on the cored samples confirm the degradation is due to metallization corrosion. Our study suggests that the difference in the darkening pattern can most likely be attributed to the different silver paste composition used for contacting each cell technology, particularly the composition of the glass frit.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
神勇广山关注了科研通微信公众号
1秒前
1秒前
晚灯君完成签到 ,获得积分0
1秒前
动听半雪完成签到,获得积分10
3秒前
萤火虫发布了新的文献求助10
3秒前
梁三柏应助yejx采纳,获得10
3秒前
王亚平完成签到,获得积分10
3秒前
3秒前
Hello应助Ariels采纳,获得30
3秒前
冻冻也发布了新的文献求助30
3秒前
4秒前
zhucebuliaobb发布了新的文献求助10
4秒前
情怀应助wangshibing采纳,获得10
4秒前
大模型应助嘟嘟拉拉hh采纳,获得10
4秒前
斯文败类应助pp采纳,获得10
5秒前
5秒前
qing发布了新的文献求助10
5秒前
5秒前
5秒前
勤劳尔丝完成签到 ,获得积分10
6秒前
6秒前
科目三应助薄荷采纳,获得10
6秒前
里丢丢发布了新的文献求助10
6秒前
ooo完成签到 ,获得积分10
7秒前
烟里戏发布了新的文献求助10
7秒前
7秒前
7秒前
CodeCraft应助wsg采纳,获得10
7秒前
学霸业完成签到,获得积分10
8秒前
LY完成签到,获得积分10
8秒前
SYX发布了新的文献求助10
8秒前
hyacinth11111完成签到,获得积分10
9秒前
mzw完成签到,获得积分20
9秒前
无忧完成签到,获得积分10
9秒前
奋斗冥幽完成签到,获得积分10
9秒前
慕青应助涨涨采纳,获得10
10秒前
sunyanghu369发布了新的文献求助10
10秒前
搜集达人应助王亚平采纳,获得10
11秒前
爱吃秋刀鱼的大脸猫完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667262
求助须知:如何正确求助?哪些是违规求助? 4884975
关于积分的说明 15119469
捐赠科研通 4826112
什么是DOI,文献DOI怎么找? 2583765
邀请新用户注册赠送积分活动 1537901
关于科研通互助平台的介绍 1496041