Agricultural machinery GNSS/IMU-integrated navigation based on fuzzy adaptive finite impulse response Kalman filtering algorithm

控制理论(社会学) 全球导航卫星系统应用 卡尔曼滤波器 导航系统 惯性测量装置 惯性导航系统 算法 计算机科学 工程类 传感器融合 模拟 全球定位系统 人工智能 数学 电信 方向(向量空间) 控制(管理) 几何学
作者
Shichao Li,Man Zhang,Yuhan Ji,Zhenqian Zhang,Ruyue Cao,Bin Chen,Han Li,Yanxin Yin
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:191: 106524-106524 被引量:30
标识
DOI:10.1016/j.compag.2021.106524
摘要

This study uses global navigation satellite system (GNSS) positioning equipment and inertial measurement unit integrated with accelerometer and gyroscope to improve the accuracy and stability of the current agricultural machinery automatic navigation technology. Considering the actual motion state of agricultural machinery in operation, a fuzzy adaptive finite impulse response Kalman filter (FA-FIR-KF) algorithm was proposed to integrate position information and attitude information, and some necessary auxiliary optimization algorithms were introduced to make innovative improvements. The introduction of quaternion method can suppress the actual nonlinear problem of the agricultural machinery coordinate caused by the attitude angle. A fuzzy inference system was adopted to improve the adaptive adjustment ability to abnormal noise. A forgetting factor was adopted to reduce the system's excessive dependence on prior statistical information, so that the system can quickly track the abrupt signal. The algorithm simulation program was written on MATLAB, and the performance and effect of the proposed algorithm were verified through simulation and farm experiments. Simulation results of artificially added noise simulation data show that the localization precision in the Xn, Yn, and Zn directions increases by 38.95%, 38.88%, and 32.99%, respectively. This finding indicates that the FA-FIR-KF algorithm can effectively suppress the Gaussian white noise of the GNSS received signal and improve the positioning accuracy of agricultural machinery. The reliability of this algorithm applied to the automatic navigation system was verified through a tractor straight-line navigation experiment. The tractor conducts an automatic navigation test at a speed of 0.8 m/s. Under the GNSS differential state, the average error and root mean square error (RMSE) are 1.074 and 1.396 cm in filtering case and 1.17 and 1.551 cm in nonfiltering case, respectively. Under the GNSS nondifferential state, the average error and RMSE are 2.097 and 2.72 cm in filtering case and 3.663 and 4.633 cm in nonfiltering case, respectively. Compared with the nonfiltering case, the average error and RMSE reduce by 8.21% and 9.99% in the differential state and 42.75% and 41.32% in the nondifferential state, respectively. Test results show that the proposed algorithm can make the agricultural machinery track the desired path more smoothly, stably, and accurately than in the nonfiltered case, and the tracking accuracy is at the centimeter level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
hohokuz完成签到,获得积分20
刚刚
一切顺遂应助Adian采纳,获得100
刚刚
刚刚
April发布了新的文献求助20
1秒前
Huaiman发布了新的文献求助10
2秒前
科研通AI5应助转角一起走采纳,获得20
2秒前
蛋炒饭完成签到,获得积分10
3秒前
执着完成签到,获得积分10
3秒前
研友_ED5GK发布了新的文献求助10
3秒前
4秒前
绿麦盲区完成签到,获得积分10
4秒前
Yvonne发布了新的文献求助10
4秒前
5秒前
5秒前
minghanl完成签到,获得积分10
6秒前
zhaomr发布了新的文献求助10
6秒前
科目三应助pbf采纳,获得20
7秒前
7秒前
7秒前
same完成签到,获得积分10
8秒前
科研通AI5应助俭朴夜雪采纳,获得30
8秒前
读研好难发布了新的文献求助10
9秒前
Adian完成签到,获得积分10
10秒前
Huaiman完成签到,获得积分10
10秒前
OvO完成签到,获得积分10
10秒前
expuery完成签到,获得积分10
10秒前
sunwending发布了新的文献求助10
10秒前
蒋时晏应助Lam采纳,获得30
11秒前
充电宝应助西子阳采纳,获得10
12秒前
OvO发布了新的文献求助10
12秒前
嗨皮y完成签到 ,获得积分20
12秒前
科研通AI2S应助majf采纳,获得10
13秒前
不知道叫什么完成签到,获得积分10
13秒前
zhaomr完成签到,获得积分10
13秒前
13秒前
13秒前
平常的擎宇完成签到,获得积分10
14秒前
Hello应助白华苍松采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762