Agricultural machinery GNSS/IMU-integrated navigation based on fuzzy adaptive finite impulse response Kalman filtering algorithm

控制理论(社会学) 全球导航卫星系统应用 卡尔曼滤波器 导航系统 惯性测量装置 惯性导航系统 算法 计算机科学 工程类 传感器融合 模拟 全球定位系统 人工智能 数学 电信 方向(向量空间) 控制(管理) 几何学
作者
Shichao Li,Man Zhang,Yuhan Ji,Zhenqian Zhang,Ruyue Cao,Bin Chen,Han Li,Yanxin Yin
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:191: 106524-106524 被引量:30
标识
DOI:10.1016/j.compag.2021.106524
摘要

This study uses global navigation satellite system (GNSS) positioning equipment and inertial measurement unit integrated with accelerometer and gyroscope to improve the accuracy and stability of the current agricultural machinery automatic navigation technology. Considering the actual motion state of agricultural machinery in operation, a fuzzy adaptive finite impulse response Kalman filter (FA-FIR-KF) algorithm was proposed to integrate position information and attitude information, and some necessary auxiliary optimization algorithms were introduced to make innovative improvements. The introduction of quaternion method can suppress the actual nonlinear problem of the agricultural machinery coordinate caused by the attitude angle. A fuzzy inference system was adopted to improve the adaptive adjustment ability to abnormal noise. A forgetting factor was adopted to reduce the system's excessive dependence on prior statistical information, so that the system can quickly track the abrupt signal. The algorithm simulation program was written on MATLAB, and the performance and effect of the proposed algorithm were verified through simulation and farm experiments. Simulation results of artificially added noise simulation data show that the localization precision in the Xn, Yn, and Zn directions increases by 38.95%, 38.88%, and 32.99%, respectively. This finding indicates that the FA-FIR-KF algorithm can effectively suppress the Gaussian white noise of the GNSS received signal and improve the positioning accuracy of agricultural machinery. The reliability of this algorithm applied to the automatic navigation system was verified through a tractor straight-line navigation experiment. The tractor conducts an automatic navigation test at a speed of 0.8 m/s. Under the GNSS differential state, the average error and root mean square error (RMSE) are 1.074 and 1.396 cm in filtering case and 1.17 and 1.551 cm in nonfiltering case, respectively. Under the GNSS nondifferential state, the average error and RMSE are 2.097 and 2.72 cm in filtering case and 3.663 and 4.633 cm in nonfiltering case, respectively. Compared with the nonfiltering case, the average error and RMSE reduce by 8.21% and 9.99% in the differential state and 42.75% and 41.32% in the nondifferential state, respectively. Test results show that the proposed algorithm can make the agricultural machinery track the desired path more smoothly, stably, and accurately than in the nonfiltered case, and the tracking accuracy is at the centimeter level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚强冷珍完成签到,获得积分10
1秒前
3秒前
3秒前
研友_VZG7GZ应助赵珊采纳,获得30
6秒前
啊呜发布了新的文献求助10
8秒前
林星应助啦啦啦采纳,获得20
8秒前
好好的er完成签到,获得积分10
9秒前
11秒前
11秒前
天真彩虹完成签到 ,获得积分10
12秒前
LZJ发布了新的文献求助10
13秒前
xpd发布了新的文献求助30
14秒前
小药丸完成签到,获得积分10
14秒前
ggw发布了新的文献求助10
14秒前
16秒前
16秒前
科研通AI2S应助tanhaowen采纳,获得10
16秒前
小晋驳回了ding应助
17秒前
我是老大应助R喻andom采纳,获得10
18秒前
19秒前
王卫完成签到,获得积分10
21秒前
22秒前
22秒前
拂谙发布了新的文献求助30
22秒前
不配.应助Tim采纳,获得10
22秒前
充电宝应助科研通管家采纳,获得10
24秒前
丘比特应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
斯文败类应助科研通管家采纳,获得10
24秒前
今后应助科研通管家采纳,获得10
24秒前
彭于晏应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
24秒前
感性的靖仇完成签到,获得积分10
25秒前
26秒前
好久不见发布了新的文献求助10
26秒前
26秒前
26秒前
Nisaix发布了新的文献求助10
27秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141296
求助须知:如何正确求助?哪些是违规求助? 2792352
关于积分的说明 7802183
捐赠科研通 2448490
什么是DOI,文献DOI怎么找? 1302608
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237