A method establishment and comparison of in vivo lung cancer model development platforms for evaluation of tumour metabolism and pharmaceutical efficacy

肺癌 医学 代谢组学 克拉斯 癌症 肿瘤科 内科学 生物 生物信息学 结直肠癌
作者
Tu-Liang Liang,Runze Li,Chu-Tian Mai,Xiaoxiang Guan,Jiaxin Li,Xuan‐Run Wang,Lin-Rui Ma,Fang‐Yuan Zhang,Jian Wang,Fan He,Hudan Pan,Hua Zhou,Peiyu Yan,Xing‐Xing Fan,Qibiao Wu,Erwin Neher,Liang Liu,Ying Xie,Elaine Lai‐Han Leung,Xiaojun Yao
出处
期刊:Phytomedicine [Elsevier BV]
卷期号:96: 153831-153831 被引量:13
标识
DOI:10.1016/j.phymed.2021.153831
摘要

Currently, the identification of accurate biomarkers for the diagnosis of patients with early-stage lung cancer remains difficult. Fortunately, metabolomics technology can be used to improve the detection of plasma metabolic biomarkers for lung cancer. In a previous study, we successfully utilised machine learning methods to identify significant metabolic markers for early-stage lung cancer diagnosis. However, a related research platform for the investigation of tumour metabolism and drug efficacy is still lacking.A novel methodology for the comprehensive evaluation of the internal tumour-metabolic profile and drug evaluation needs to be established.The optimal location for tumour cell inoculation was identified in mouse chest for the non-traumatic orthotopic lung cancer mouse model. Microcomputed tomography (micro-CT) was applied to monitor lung tumour growth. Proscillaridin A (P.A) and cisplatin (CDDP) were utilised to verify the anti-lung cancer efficacy of the platform. The top five clinically valid biomarkers, including proline, L-kynurenine, spermidine, taurine and palmitoyl-L-carnitine, were selected as the evaluation indices to obtain a suitable lung cancer mouse model for clinical metabolomics research by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS).The platform was successfully established, achieving 100% tumour development rate and 0% surgery mortality. P.A and CDDP had significant anti-lung cancer efficacy in the platform. Compared with the control group, four biomarkers in the orthotopic model and two biomarkers in the metastatic model had significantly higher abundance. Principal component analysis (PCA) showed a significant separation between the orthotopic/metastatic model and the control/subcutaneous/KRAS transgenic model. The platform was mainly involved in arginine and proline metabolism, tryptophan metabolism, and taurine and hypotaurine metabolism.This study is the first to simulate clinical metabolomics by comparing the metabolic phenotype of plasma in different lung cancer mouse models. We found that the orthotopic model was the most suitable for tumour metabolism. Furthermore, the anti-tumour drug efficacy was verified in the platform. The platform can very well match the clinical reality, providing better lung cancer diagnosis and securing more precise evidence for drug evaluation in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
落后觅云发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
秋刀鱼小子完成签到,获得积分10
2秒前
Lijia_YAO发布了新的文献求助10
2秒前
2秒前
奇迹大多发布了新的文献求助10
4秒前
jiang发布了新的文献求助10
4秒前
小陈同学完成签到,获得积分10
5秒前
5秒前
5秒前
zhang发布了新的文献求助30
5秒前
勤恳傲旋发布了新的文献求助10
5秒前
menghao完成签到,获得积分10
7秒前
飞阳发布了新的文献求助10
7秒前
8秒前
ZC完成签到,获得积分10
9秒前
9秒前
10秒前
fst完成签到 ,获得积分10
10秒前
12秒前
12秒前
每天我都睡得好完成签到 ,获得积分10
12秒前
凉面发布了新的文献求助10
13秒前
楠木木发布了新的文献求助10
14秒前
无欲无求发布了新的文献求助10
14秒前
努力发布了新的文献求助10
15秒前
上官若男应助MJH123456采纳,获得10
15秒前
CXS发布了新的文献求助10
15秒前
16秒前
666关注了科研通微信公众号
16秒前
jiang发布了新的文献求助10
16秒前
17秒前
wzc完成签到 ,获得积分10
18秒前
射鵰不慎闪腰完成签到,获得积分10
19秒前
享耳完成签到 ,获得积分10
19秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
中国农业科学院王强研究员团队:食品多尺度结构与品质功能调控 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5196280
求助须知:如何正确求助?哪些是违规求助? 4378008
关于积分的说明 13634839
捐赠科研通 4233464
什么是DOI,文献DOI怎么找? 2322279
邀请新用户注册赠送积分活动 1320400
关于科研通互助平台的介绍 1270764