A method establishment and comparison of in vivo lung cancer model development platforms for evaluation of tumour metabolism and pharmaceutical efficacy

肺癌 医学 代谢组学 克拉斯 癌症 肿瘤科 内科学 生物 生物信息学 结直肠癌
作者
Tu-Liang Liang,Runze Li,Chu-Tian Mai,Xiaoxiang Guan,Jiaxin Li,Xuan-Run Wang,Lin-Rui Ma,Fang‐Yuan Zhang,Jian Wang,Fan He,Hudan Pan,Hua Zhou,Peiyu Yan,Xing‐Xing Fan,Qibiao Wu,Erwin Neher,Liang Liu,Ying Xie,Elaine Lai‐Han Leung,Xiaojun Yao
出处
期刊:Phytomedicine [Elsevier]
卷期号:96: 153831-153831 被引量:4
标识
DOI:10.1016/j.phymed.2021.153831
摘要

Currently, the identification of accurate biomarkers for the diagnosis of patients with early-stage lung cancer remains difficult. Fortunately, metabolomics technology can be used to improve the detection of plasma metabolic biomarkers for lung cancer. In a previous study, we successfully utilised machine learning methods to identify significant metabolic markers for early-stage lung cancer diagnosis. However, a related research platform for the investigation of tumour metabolism and drug efficacy is still lacking.A novel methodology for the comprehensive evaluation of the internal tumour-metabolic profile and drug evaluation needs to be established.The optimal location for tumour cell inoculation was identified in mouse chest for the non-traumatic orthotopic lung cancer mouse model. Microcomputed tomography (micro-CT) was applied to monitor lung tumour growth. Proscillaridin A (P.A) and cisplatin (CDDP) were utilised to verify the anti-lung cancer efficacy of the platform. The top five clinically valid biomarkers, including proline, L-kynurenine, spermidine, taurine and palmitoyl-L-carnitine, were selected as the evaluation indices to obtain a suitable lung cancer mouse model for clinical metabolomics research by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS).The platform was successfully established, achieving 100% tumour development rate and 0% surgery mortality. P.A and CDDP had significant anti-lung cancer efficacy in the platform. Compared with the control group, four biomarkers in the orthotopic model and two biomarkers in the metastatic model had significantly higher abundance. Principal component analysis (PCA) showed a significant separation between the orthotopic/metastatic model and the control/subcutaneous/KRAS transgenic model. The platform was mainly involved in arginine and proline metabolism, tryptophan metabolism, and taurine and hypotaurine metabolism.This study is the first to simulate clinical metabolomics by comparing the metabolic phenotype of plasma in different lung cancer mouse models. We found that the orthotopic model was the most suitable for tumour metabolism. Furthermore, the anti-tumour drug efficacy was verified in the platform. The platform can very well match the clinical reality, providing better lung cancer diagnosis and securing more precise evidence for drug evaluation in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小琦琦发布了新的文献求助10
1秒前
fh发布了新的文献求助10
2秒前
文静的银耳汤完成签到,获得积分20
4秒前
5秒前
5秒前
5秒前
Qiu发布了新的文献求助10
5秒前
7秒前
fh完成签到,获得积分10
9秒前
所所应助科研通管家采纳,获得10
10秒前
老肖应助科研通管家采纳,获得30
10秒前
balabala3发布了新的文献求助10
10秒前
大个应助科研通管家采纳,获得10
10秒前
今后应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
11秒前
老肖应助科研通管家采纳,获得10
11秒前
我是125发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
仲达完成签到,获得积分10
11秒前
12秒前
12秒前
Kristine完成签到 ,获得积分10
13秒前
悦耳觅荷完成签到,获得积分20
14秒前
顺利的若云完成签到,获得积分10
15秒前
18秒前
天天开心完成签到 ,获得积分10
18秒前
19秒前
英姑应助xuex1采纳,获得10
20秒前
22秒前
23秒前
小黄发布了新的文献求助10
24秒前
欢喜发卡发布了新的文献求助10
25秒前
姜黎完成签到,获得积分10
26秒前
cc完成签到,获得积分10
26秒前
lili发布了新的文献求助20
27秒前
27秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142116
求助须知:如何正确求助?哪些是违规求助? 2793064
关于积分的说明 7805155
捐赠科研通 2449387
什么是DOI,文献DOI怎么找? 1303185
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291