A method establishment and comparison of in vivo lung cancer model development platforms for evaluation of tumour metabolism and pharmaceutical efficacy

肺癌 医学 代谢组学 克拉斯 癌症 肿瘤科 内科学 生物 生物信息学 结直肠癌
作者
Tu-Liang Liang,Runze Li,Chu-Tian Mai,Xiaoxiang Guan,Jiaxin Li,Xuan‐Run Wang,Lin-Rui Ma,Fang‐Yuan Zhang,Jian Wang,Fan He,Hudan Pan,Hua Zhou,Peiyu Yan,Xing‐Xing Fan,Qibiao Wu,Erwin Neher,Liang Liu,Ying Xie,Elaine Lai‐Han Leung,Xiaojun Yao
出处
期刊:Phytomedicine [Elsevier]
卷期号:96: 153831-153831 被引量:13
标识
DOI:10.1016/j.phymed.2021.153831
摘要

Currently, the identification of accurate biomarkers for the diagnosis of patients with early-stage lung cancer remains difficult. Fortunately, metabolomics technology can be used to improve the detection of plasma metabolic biomarkers for lung cancer. In a previous study, we successfully utilised machine learning methods to identify significant metabolic markers for early-stage lung cancer diagnosis. However, a related research platform for the investigation of tumour metabolism and drug efficacy is still lacking.A novel methodology for the comprehensive evaluation of the internal tumour-metabolic profile and drug evaluation needs to be established.The optimal location for tumour cell inoculation was identified in mouse chest for the non-traumatic orthotopic lung cancer mouse model. Microcomputed tomography (micro-CT) was applied to monitor lung tumour growth. Proscillaridin A (P.A) and cisplatin (CDDP) were utilised to verify the anti-lung cancer efficacy of the platform. The top five clinically valid biomarkers, including proline, L-kynurenine, spermidine, taurine and palmitoyl-L-carnitine, were selected as the evaluation indices to obtain a suitable lung cancer mouse model for clinical metabolomics research by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS).The platform was successfully established, achieving 100% tumour development rate and 0% surgery mortality. P.A and CDDP had significant anti-lung cancer efficacy in the platform. Compared with the control group, four biomarkers in the orthotopic model and two biomarkers in the metastatic model had significantly higher abundance. Principal component analysis (PCA) showed a significant separation between the orthotopic/metastatic model and the control/subcutaneous/KRAS transgenic model. The platform was mainly involved in arginine and proline metabolism, tryptophan metabolism, and taurine and hypotaurine metabolism.This study is the first to simulate clinical metabolomics by comparing the metabolic phenotype of plasma in different lung cancer mouse models. We found that the orthotopic model was the most suitable for tumour metabolism. Furthermore, the anti-tumour drug efficacy was verified in the platform. The platform can very well match the clinical reality, providing better lung cancer diagnosis and securing more precise evidence for drug evaluation in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
buno应助科研通管家采纳,获得10
刚刚
小菜发布了新的文献求助10
刚刚
djshao应助科研通管家采纳,获得10
刚刚
一一应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
buno应助科研通管家采纳,获得10
1秒前
buno应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
buno应助科研通管家采纳,获得10
1秒前
djshao应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
buno应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得50
2秒前
buno应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
2秒前
buno应助科研通管家采纳,获得10
2秒前
NexusExplorer应助Fine采纳,获得10
2秒前
2秒前
2秒前
大个应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
RX信发布了新的文献求助10
3秒前
务实明辉发布了新的文献求助10
4秒前
含糊的从云完成签到,获得积分10
5秒前
Nann完成签到 ,获得积分10
5秒前
充电宝应助年轻绮南采纳,获得10
6秒前
6秒前
干净溪流完成签到,获得积分10
7秒前
esdeath发布了新的文献求助10
8秒前
Owen应助清一采纳,获得10
8秒前
爆米花应助ms采纳,获得10
9秒前
11秒前
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609955
求助须知:如何正确求助?哪些是违规求助? 4694535
关于积分的说明 14882709
捐赠科研通 4720767
什么是DOI,文献DOI怎么找? 2544982
邀请新用户注册赠送积分活动 1509819
关于科研通互助平台的介绍 1473013