786 Dose selection for DuoBody®-PD-L1×4-1BB (GEN1046) using a semimechanistic pharmacokinetics/pharmacodynamics model that leverages preclinical and clinical data

药效学 T细胞 三聚体 药代动力学 抗体 药理学 免疫疗法 免疫系统 医学 癌症研究 化学 免疫学 有机化学 二聚体
作者
Gaurav Bajaj,Fereshteh Nazari,Marc Presler,Craig J. Thalhauser,Ulf Forssmann,Maria Jure‐Kunkel,Alexander Muik,Eleni Lagkadinou,Özlem Türeci,Uğur Şahin,Tahamtan Ahmadi,Manish Gupta
标识
DOI:10.1136/jitc-2021-sitc2021.786
摘要

Background

DuoBody-PD-L1×4-1BB (GEN1046) is a class-defining bispecific antibody, designed to elicit an anti-tumor immune response by simultaneous and complementary blockade of PD-L1 on tumor cells and conditional stimulation of 4-1BB on T-cells and NK cells. Optimizing target engagement for a bispecific antibody is challenging, as it involves binding with two targets, and predicting trimer levels in tumors based on affinity of individual arms and target expression. Here we describe a semimechanistic, physiologically based pharmacokinetic/pharmacodynamic (PK/PD) model that predicts a dosing regimen for DuoBody-PD-L1×4-1BB, which results in the formation of maximum levels of a therapeutically active 4-1BB-bispecific antibody-PD-L1 trimolecular complex (trimer), and optimal PD-L1 receptor occupancy (RO).

Methods

An integrated semimechanistic PK/PD model that describes the distribution of DuoBody-PD-L1×4-1BB into central and peripheral compartments and partitioning into tumor/lymph nodes was developed. The model used PK/PD data and physiological parameters from the literature for parameterizations of PD-L1 and 4-1BB expression levels and T-cell trafficking. The model incorporates dynamic binding of DuoBody-PD-L1×4-1BB to its targets to predict trimer formation and RO for PD-L1 in tumors. Model parameters were calibrated to match in vitro PD studies, such as analyses of T-cell proliferation and cytokine release, as well as clinical PK data. Sensitivity to model assumptions were assessed by varying PK/PD parameters, and assessing their impact on trimer formation and PD-L1 RO. The model was subsequently used to explore in vivo trimer levels and PD-L1 RO in tumors at various dosing regimens.

Results

The model was able to adequately describe the PK of DuoBody-PD-L1×4-1BB in the central compartment. Simulations showed a bell-shaped response for average trimer levels in tumors that peaked at 100 mg every 3 weeks (Q3W), with doses >100 mg resulting in reduced trimer formation. Average PD-L1 receptor occupancy at the 100 mg dose was predicted to be approximately 70% over 21 days and increased at higher doses. Based on these model predictions, and available safety, anti-tumor activity, and PD data from the ongoing GCT1046-01 trial (NCT03917381), 100 mg Q3W was chosen as the expansion dose for further evaluation in Part 2 of the study.

Conclusions

This semimechanistic PK/PD model provides a novel approach for dose selection of bispecific antibodies such as DuoBody-PD-L1×4-1BB, by using preclinical and clinical PK/PD data to predict formation of optimal trimer levels and PD-L1 receptor occupancy.

Acknowledgements

The authors thank Friederike Gieseke and Zuzana Jirakova at BioNTech SE; Kalyanasundaram Subramanian at Applied Biomath LLC for their valuable contributions.

Trial Registration

Written informed consent, in accordance with principles that originated in the Declaration of Helsinki 2013, current ICH guidelines including ICH-GCP E6(R2), applicable regulatory requirements, and sponsor policy, was provided by the patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
翠翠完成签到,获得积分10
2秒前
2秒前
LSH970829完成签到,获得积分10
3秒前
Lyg完成签到,获得积分20
4秒前
坚强的樱发布了新的文献求助10
4秒前
baodingning完成签到,获得积分10
5秒前
5秒前
公茂源发布了新的文献求助30
5秒前
热爱完成签到,获得积分10
6秒前
7秒前
叫滚滚发布了新的文献求助10
8秒前
星瑆心完成签到,获得积分10
8秒前
啦啦啦啦啦完成签到,获得积分10
9秒前
Lyg发布了新的文献求助10
9秒前
Dksido完成签到,获得积分10
10秒前
兰博基尼奥完成签到,获得积分10
10秒前
热情芷荷发布了新的文献求助10
12秒前
random完成签到,获得积分10
13秒前
13秒前
果果瑞宁完成签到,获得积分10
13秒前
14秒前
机智小虾米完成签到,获得积分20
14秒前
goldenfleece完成签到,获得积分10
15秒前
科研通AI2S应助学者采纳,获得10
15秒前
小杨完成签到,获得积分10
16秒前
sutharsons应助科研通管家采纳,获得30
17秒前
17秒前
Ava应助科研通管家采纳,获得10
17秒前
慕青应助科研通管家采纳,获得10
17秒前
所所应助科研通管家采纳,获得10
17秒前
在水一方应助科研通管家采纳,获得10
17秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得30
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
科目三应助科研通管家采纳,获得10
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
CipherSage应助科研通管家采纳,获得30
17秒前
SciGPT应助科研通管家采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808