Assessing Algorithmic Fairness with Unobserved Protected Class Using Data Combination

差别性影响 代理(统计) 计算机科学 数据科学 地理定位 集合(抽象数据类型) 异类系统 分析 多样性(控制论) 班级(哲学) 数据挖掘 机器学习 人工智能 数据库 万维网 程序设计语言 法学 最高法院 政治学
作者
Nathan Kallus,Xiaojie Mao,Angela Zhou
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:68 (3): 1959-1981 被引量:45
标识
DOI:10.1287/mnsc.2020.3850
摘要

The increasing impact of algorithmic decisions on people’s lives compels us to scrutinize their fairness and, in particular, the disparate impacts that ostensibly color-blind algorithms can have on different groups. Examples include credit decisioning, hiring, advertising, criminal justice, personalized medicine, and targeted policy making, where in some cases legislative or regulatory frameworks for fairness exist and define specific protected classes. In this paper we study a fundamental challenge to assessing disparate impacts in practice: protected class membership is often not observed in the data. This is particularly a problem in lending and healthcare. We consider the use of an auxiliary data set, such as the U.S. census, to construct models that predict the protected class from proxy variables, such as surname and geolocation. We show that even with such data, a variety of common disparity measures are generally unidentifiable, providing a new perspective on the documented biases of popular proxy-based methods. We provide exact characterizations of the tightest possible set of all possible true disparities that are consistent with the data (and possibly additional assumptions). We further provide optimization-based algorithms for computing and visualizing these sets and statistical tools to assess sampling uncertainty. Together, these enable reliable and robust assessments of disparities—an important tool when disparity assessment can have far-reaching policy implications. We demonstrate this in two case studies with real data: mortgage lending and personalized medicine dosing. This paper was accepted by Hamid Nazerzadeh, Management Science Special Section on Data-Driven Prescriptive Analytics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nan完成签到,获得积分10
刚刚
2秒前
李爱国应助科研小菜鸡采纳,获得10
2秒前
可爱的函函应助HUYUE采纳,获得10
2秒前
arsenal发布了新的文献求助10
5秒前
5秒前
忧虑的代容完成签到,获得积分10
7秒前
清秀的怀蕊完成签到 ,获得积分10
7秒前
8秒前
神勇傲儿完成签到,获得积分10
8秒前
9秒前
12秒前
sutharsons留下了新的社区评论
13秒前
HJY完成签到 ,获得积分10
14秒前
完美世界应助aaaacc采纳,获得30
14秒前
14秒前
whujiege完成签到,获得积分10
15秒前
扬帆起航发布了新的文献求助10
16秒前
17秒前
17秒前
刘汉淼完成签到,获得积分10
17秒前
红薯干完成签到,获得积分10
17秒前
你看起来好好吃完成签到 ,获得积分10
18秒前
19秒前
Sg发布了新的文献求助10
20秒前
情怀应助俭朴的世立采纳,获得10
21秒前
Gail完成签到 ,获得积分10
21秒前
22秒前
田様应助单纯的思松采纳,获得30
22秒前
23秒前
xia完成签到,获得积分10
25秒前
小马甲应助白蓝红采纳,获得10
25秒前
shancai发布了新的文献求助10
26秒前
呆萌惜梦完成签到 ,获得积分10
26秒前
26秒前
家稚晴完成签到,获得积分10
30秒前
csj完成签到,获得积分10
30秒前
30秒前
31秒前
aaaacc发布了新的文献求助30
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312233
求助须知:如何正确求助?哪些是违规求助? 2944813
关于积分的说明 8521583
捐赠科研通 2620532
什么是DOI,文献DOI怎么找? 1432912
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650131