降噪
阈值
图像去噪
人工智能
计算机科学
背景(考古学)
模式识别(心理学)
词典学习
神经编码
趋同(经济学)
算法
图像(数学)
经济增长
生物
古生物学
经济
标识
DOI:10.1109/isscs52333.2021.9497412
摘要
We investigate a dictionary learning approach in the context of image denoising via sparse coding, where the dictionary is adapted for Null Space Tuning (NST) recovery algorithms. We formulate a modified optimization problem for NST dictionaries and we propose a variant of the Iterative Shrinkage/Thresholding (ISTA) ISTA and Learned-ISTA iterations for learning it. The resulting model is evaluated in the context of image denoising with Deep K-SVD. Simulation results show faster convergence and improved efficiency, at least in the context of smaller training datasets.
科研通智能强力驱动
Strongly Powered by AbleSci AI