Machine learning approaches to rock fracture mechanics problems: Mode-I fracture toughness determination

断裂韧性 机器学习 人工智能 断裂(地质) 随机森林 模式(计算机接口) 人工神经网络 计算机科学 韧性 岩石力学 万能试验机 地质学 材料科学 岩土工程 算法 复合材料 极限抗拉强度 操作系统
作者
Yunteng Wang,Xiang Zhang,Xianshan Liu
出处
期刊:Engineering Fracture Mechanics [Elsevier]
卷期号:253: 107890-107890 被引量:27
标识
DOI:10.1016/j.engfracmech.2021.107890
摘要

The cracked chevron notched Brazilian disc (CCNBD) specimen is a suggested testing method to measure Mode-I fracture toughness of rocks by ISRM, which is widely adopted in the laboratory experiments. However, sizes of CCNBD rock specimens are uncertain in the laboratory experiments, which leads to be inaccurate in measurement of Mode-I fracture toughness of rocks in tests. In this work, four machine learning approaches, including decision regression tree, random regression forest, extra regression tree and fully-connected neural networks (FCNNs) are developed and their feasibility and value are demonstrated through the analysis and predictions of Mode-I fracture toughness of rocks. It can be found that solutions based on the four machine learning approaches can provide the accurate results for predicting Mode-I fracture toughness of rock by in ISRM-suggested CCNBD rock specimens. The random regression forest is more suitable to predict Mode-I fracture toughness of rocks in ISRM-suggested CCNBD rock tests than others. The reliable functionality and rapid development of machine learning solutions are demonstrated that it is a major improvement over the previous analytical and empirical solutions by this example. When analytical and empirical solutions are not available, machine learning approaches overcome the associated limitations, which provides a substantially way to solve rock engineering problems. • Machine learning provides an alternative way to predict complex physical phenomena. • Four machine learning methods are applied to predict K I of rocks. • Machine learning approaches are able to accelerate data interpolation in measurements of K I of rocks. • Four machine learning solutions of rock K I are compared.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
震666发布了新的文献求助30
刚刚
MADKAI发布了新的文献求助10
刚刚
刚刚
117发布了新的文献求助10
刚刚
1秒前
1秒前
酶没美镁完成签到,获得积分10
1秒前
小二郎应助Rui采纳,获得10
1秒前
Libra完成签到,获得积分10
2秒前
雪儿发布了新的文献求助30
2秒前
无悔呀发布了新的文献求助10
2秒前
小巧的可仁完成签到 ,获得积分10
2秒前
2秒前
zhao完成签到,获得积分10
3秒前
masu发布了新的文献求助10
3秒前
冷酷尔琴发布了新的文献求助10
4秒前
Ll发布了新的文献求助10
4秒前
优雅山柏完成签到,获得积分10
4秒前
XinyiZhang发布了新的文献求助10
4秒前
小蘑菇应助yangyang采纳,获得10
4秒前
慕青应助欢欢采纳,获得10
5秒前
小憩完成签到,获得积分10
5秒前
南乔发布了新的文献求助10
5秒前
张静静发布了新的文献求助10
6秒前
云儿完成签到,获得积分10
6秒前
淡淡的洋葱完成签到,获得积分10
6秒前
小洲王先生完成签到,获得积分10
7秒前
7秒前
dd完成签到,获得积分10
7秒前
7秒前
8秒前
CCL应助kk2024采纳,获得50
8秒前
wjs0406完成签到,获得积分10
8秒前
自爱悠然发布了新的文献求助10
8秒前
贺雪完成签到,获得积分10
9秒前
9秒前
玉yu发布了新的文献求助10
10秒前
深情秋刀鱼完成签到,获得积分10
10秒前
星辰大海应助冷酷尔琴采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740