Machine learning approaches to rock fracture mechanics problems: Mode-I fracture toughness determination

断裂韧性 机器学习 人工智能 断裂(地质) 随机森林 模式(计算机接口) 人工神经网络 计算机科学 韧性 岩石力学 万能试验机 地质学 材料科学 岩土工程 算法 复合材料 极限抗拉强度 操作系统
作者
Yunteng Wang,Xiang Zhang,Xianshan Liu
出处
期刊:Engineering Fracture Mechanics [Elsevier BV]
卷期号:253: 107890-107890 被引量:27
标识
DOI:10.1016/j.engfracmech.2021.107890
摘要

The cracked chevron notched Brazilian disc (CCNBD) specimen is a suggested testing method to measure Mode-I fracture toughness of rocks by ISRM, which is widely adopted in the laboratory experiments. However, sizes of CCNBD rock specimens are uncertain in the laboratory experiments, which leads to be inaccurate in measurement of Mode-I fracture toughness of rocks in tests. In this work, four machine learning approaches, including decision regression tree, random regression forest, extra regression tree and fully-connected neural networks (FCNNs) are developed and their feasibility and value are demonstrated through the analysis and predictions of Mode-I fracture toughness of rocks. It can be found that solutions based on the four machine learning approaches can provide the accurate results for predicting Mode-I fracture toughness of rock by in ISRM-suggested CCNBD rock specimens. The random regression forest is more suitable to predict Mode-I fracture toughness of rocks in ISRM-suggested CCNBD rock tests than others. The reliable functionality and rapid development of machine learning solutions are demonstrated that it is a major improvement over the previous analytical and empirical solutions by this example. When analytical and empirical solutions are not available, machine learning approaches overcome the associated limitations, which provides a substantially way to solve rock engineering problems. • Machine learning provides an alternative way to predict complex physical phenomena. • Four machine learning methods are applied to predict K I of rocks. • Machine learning approaches are able to accelerate data interpolation in measurements of K I of rocks. • Four machine learning solutions of rock K I are compared.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
典雅碧空应助infinity采纳,获得10
1秒前
xrl完成签到,获得积分10
2秒前
xinran_lv完成签到,获得积分10
2秒前
wmy发布了新的文献求助10
3秒前
du发布了新的文献求助10
3秒前
FancyShi完成签到,获得积分10
3秒前
微生完成签到 ,获得积分10
3秒前
3秒前
阳小颖发布了新的文献求助10
3秒前
自信的丸子完成签到,获得积分10
4秒前
4秒前
顺心的芝麻完成签到 ,获得积分10
4秒前
科研圣体发布了新的文献求助10
4秒前
支妙完成签到,获得积分10
5秒前
5秒前
6秒前
wangdao完成签到,获得积分10
7秒前
7秒前
8秒前
HSF完成签到 ,获得积分10
8秒前
9秒前
yuki完成签到 ,获得积分10
9秒前
Xiaoyan发布了新的文献求助10
9秒前
10秒前
10秒前
秀丽友灵完成签到,获得积分10
11秒前
虚幻芷文完成签到,获得积分10
12秒前
20250702完成签到 ,获得积分10
12秒前
柏舟发布了新的文献求助20
12秒前
何hyy发布了新的文献求助10
13秒前
13秒前
星辰大海应助mbl2006采纳,获得200
13秒前
13秒前
14秒前
舒心思雁发布了新的文献求助10
15秒前
大舟Austin完成签到 ,获得积分10
15秒前
tifosi发布了新的文献求助10
16秒前
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965984
求助须知:如何正确求助?哪些是违规求助? 3511325
关于积分的说明 11157405
捐赠科研通 3245882
什么是DOI,文献DOI怎么找? 1793218
邀请新用户注册赠送积分活动 874262
科研通“疑难数据库(出版商)”最低求助积分说明 804286