Systems-level effects of allosteric perturbations to a model molecular switch

变构调节 计算机科学 生物 遗传学 受体
作者
Tina Perica,Christopher J.P. Mathy,Jiewei Xu,Gwendolyn Μ. Jang,Yang Zhang,Robyn M. Kaake,Noah Ollikainen,Hannes Braberg,Danielle L. Swaney,David G. Lambright,Mark J. S. Kelly,Nevan J. Krogan,Tanja Kortemme
出处
期刊:Nature [Nature Portfolio]
卷期号:599 (7883): 152-157 被引量:17
标识
DOI:10.1038/s41586-021-03982-6
摘要

Molecular switch proteins whose cycling between states is controlled by opposing regulators1,2 are central to biological signal transduction. As switch proteins function within highly connected interaction networks3, the fundamental question arises of how functional specificity is achieved when different processes share common regulators. Here we show that functional specificity of the small GTPase switch protein Gsp1 in Saccharomyces cerevisiae (the homologue of the human protein RAN)4 is linked to differential sensitivity of biological processes to different kinetics of the Gsp1 (RAN) switch cycle. We make 55 targeted point mutations to individual protein interaction interfaces of Gsp1 (RAN) and show through quantitative genetic5 and physical interaction mapping that Gsp1 (RAN) interface perturbations have widespread cellular consequences. Contrary to expectation, the cellular effects of the interface mutations group by their biophysical effects on kinetic parameters of the GTPase switch cycle and not by the targeted interfaces. Instead, we show that interface mutations allosterically tune the GTPase cycle kinetics. These results suggest a model in which protein partner binding, or post-translational modifications at distal sites, could act as allosteric regulators of GTPase switching. Similar mechanisms may underlie regulation by other GTPases, and other biological switches. Furthermore, our integrative platform to determine the quantitative consequences of molecular perturbations may help to explain the effects of disease mutations that target central molecular switches. Interface mutations in the GTPase switch protein Gsp1 (the yeast homologue of human RAN) allosterically affect the kinetics of the switch cycle, revealing a systems-level mechanism of multi-specificity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助科研小白采纳,获得10
1秒前
彭于晏应助端庄的涟妖采纳,获得10
2秒前
淡然冬灵应助jjjj采纳,获得30
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
打打应助乖拉采纳,获得10
7秒前
豪哥发布了新的文献求助10
7秒前
7秒前
科研通AI5应助balabala采纳,获得10
7秒前
zwk发布了新的文献求助20
8秒前
科研通AI5应助猪猪hero采纳,获得10
8秒前
优雅的紫寒完成签到,获得积分10
10秒前
10秒前
龙江阿祖发布了新的文献求助10
10秒前
脑洞疼应助轶Y采纳,获得10
10秒前
英俊的铭应助。?。采纳,获得10
12秒前
14秒前
Orange应助尤玉采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
打打应助urman采纳,获得10
15秒前
邓文博发布了新的文献求助10
15秒前
balabala完成签到,获得积分20
16秒前
16秒前
丝垚完成签到 ,获得积分10
17秒前
17秒前
粗心的chen发布了新的文献求助10
18秒前
18秒前
归尘发布了新的文献求助30
19秒前
量子星尘发布了新的文献求助10
20秒前
从容谷菱完成签到,获得积分10
20秒前
21秒前
小二郎应助。?。采纳,获得10
21秒前
香蕉觅云应助hyominhsu采纳,获得10
21秒前
jcx9ewfhwe发布了新的文献求助30
22秒前
猪猪hero发布了新的文献求助10
23秒前
无知小白发布了新的文献求助10
23秒前
23秒前
25秒前
爆米花应助Nzee采纳,获得10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664568
求助须知:如何正确求助?哪些是违规求助? 3224522
关于积分的说明 9758004
捐赠科研通 2934442
什么是DOI,文献DOI怎么找? 1606858
邀请新用户注册赠送积分活动 758890
科研通“疑难数据库(出版商)”最低求助积分说明 735035