Synthetic digital reconstructed radiographs for MR-only robotic stereotactic radiation therapy: A proof of concept

基准标记 赛博刀 放射外科 计算机科学 人工智能 基本事实 图像配准 核医学 可视化 医学影像学 计算机视觉 医学 放射治疗 放射科 图像(数学)
作者
Gregory Szalkowski,Dong Nie,Tong Zhu,Pew‐Thian Yap,Jun Lian
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:138: 104917-104917 被引量:4
标识
DOI:10.1016/j.compbiomed.2021.104917
摘要

To create synthetic CTs and digital reconstructed radiographs (DRRs) from MR images that allow for fiducial visualization and accurate dose calculation for MR-only radiosurgery.We developed a machine learning model to create synthetic CTs from pelvic MRs for prostate treatments. This model has been previously proven to generate synthetic CTs with accuracy on par or better than alternate methods, such as atlas-based registration. Our dataset consisted of 11 paired CT and conventional MR (T2) images used for previous CyberKnife (Accuray, Inc) radiotherapy treatments. The MR images were pre-processed to mimic the appearance of fiducial-enhancing images. Two models were trained for each parameter case, using a sub-set of the available image pairs, with the remaining images set aside for testing and validation of the model to identify the optimal patch size and number of image pairs used for training. Four models were then trained using the identified parameters and used to generate synthetic CTs, which in turn were used to generate DRRs at angles 45° and 315°, as would be used for a CyberKnife treatment. The synthetic CTs and DRRs were compared visually and using the mean squared error and peak signal-to-noise ratio against the ground-truth images to evaluate their similarity.The synthetic CTs, as well as the DRRs generated from them, gave similar visualization of the fiducial markers in the prostate as the true counterparts. There was no significant difference found for the fiducial localization for the CTs and DRRs. Across the 8 DRRs analyzed, the mean MSE between the normalized true and synthetic DRRs was 0.66 ± 0.42% and the mean PSNR for this region was 22.9 ± 3.7 dB. For the full CTs, the mean MAE was 72.9 ± 88.1 HU and the mean PSNR was 31.2 ± 2.2 dB.Our machine learning-based method provides a proof of concept of a way to generate synthetic CTs and DRRs for accurate dose calculation and fiducial localization for use in radiation treatment of the prostate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Marybaby完成签到,获得积分10
1秒前
荆月竹发布了新的文献求助10
1秒前
叶子完成签到,获得积分10
2秒前
热心的陈三完成签到,获得积分10
2秒前
DZQ完成签到,获得积分10
4秒前
研友_8DA7DL发布了新的文献求助10
4秒前
杨冰完成签到,获得积分10
4秒前
暴躁的嘉懿完成签到,获得积分10
6秒前
激流勇进wb完成签到 ,获得积分10
7秒前
斯文败类应助荆月竹采纳,获得10
8秒前
阮阮完成签到,获得积分10
9秒前
加减乘除完成签到,获得积分10
9秒前
catyew完成签到 ,获得积分10
9秒前
共享精神应助小豪号采纳,获得10
9秒前
共享精神应助史子轩采纳,获得10
9秒前
ff完成签到,获得积分10
9秒前
平凡中的限量版完成签到,获得积分10
9秒前
乐乐应助郝宝真采纳,获得10
11秒前
李健的小迷弟应助lxf448采纳,获得10
11秒前
yecheng完成签到,获得积分10
12秒前
问问问完成签到,获得积分10
12秒前
科研通AI2S应助Apple采纳,获得10
12秒前
胖小羊完成签到,获得积分10
12秒前
芈冖完成签到,获得积分10
13秒前
唯美完成签到,获得积分10
14秒前
小二郎应助动人的cc采纳,获得10
14秒前
结实的元灵完成签到,获得积分10
14秒前
爱看文献的七七完成签到,获得积分20
14秒前
小怪兽完成签到,获得积分10
15秒前
16秒前
ntxiaohu完成签到,获得积分10
17秒前
乐观银耳汤完成签到,获得积分10
17秒前
荆月竹完成签到,获得积分10
17秒前
18秒前
研友_8DA7DL完成签到,获得积分10
18秒前
淡定的月半完成签到,获得积分10
19秒前
在我梦里绕完成签到,获得积分10
20秒前
科研通AI2S应助东asdfghjkl采纳,获得10
20秒前
李泽中完成签到,获得积分20
20秒前
小小aa16完成签到,获得积分10
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134083
求助须知:如何正确求助?哪些是违规求助? 2784918
关于积分的说明 7769341
捐赠科研通 2440444
什么是DOI,文献DOI怎么找? 1297415
科研通“疑难数据库(出版商)”最低求助积分说明 624959
版权声明 600792