Synthetic digital reconstructed radiographs for MR-only robotic stereotactic radiation therapy: A proof of concept

基准标记 赛博刀 放射外科 计算机科学 人工智能 基本事实 图像配准 核医学 可视化 医学影像学 计算机视觉 医学 放射治疗 放射科 图像(数学)
作者
Gregory Szalkowski,Dong Nie,Tong Zhu,Pew‐Thian Yap,Jun Lian
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:138: 104917-104917 被引量:4
标识
DOI:10.1016/j.compbiomed.2021.104917
摘要

To create synthetic CTs and digital reconstructed radiographs (DRRs) from MR images that allow for fiducial visualization and accurate dose calculation for MR-only radiosurgery.We developed a machine learning model to create synthetic CTs from pelvic MRs for prostate treatments. This model has been previously proven to generate synthetic CTs with accuracy on par or better than alternate methods, such as atlas-based registration. Our dataset consisted of 11 paired CT and conventional MR (T2) images used for previous CyberKnife (Accuray, Inc) radiotherapy treatments. The MR images were pre-processed to mimic the appearance of fiducial-enhancing images. Two models were trained for each parameter case, using a sub-set of the available image pairs, with the remaining images set aside for testing and validation of the model to identify the optimal patch size and number of image pairs used for training. Four models were then trained using the identified parameters and used to generate synthetic CTs, which in turn were used to generate DRRs at angles 45° and 315°, as would be used for a CyberKnife treatment. The synthetic CTs and DRRs were compared visually and using the mean squared error and peak signal-to-noise ratio against the ground-truth images to evaluate their similarity.The synthetic CTs, as well as the DRRs generated from them, gave similar visualization of the fiducial markers in the prostate as the true counterparts. There was no significant difference found for the fiducial localization for the CTs and DRRs. Across the 8 DRRs analyzed, the mean MSE between the normalized true and synthetic DRRs was 0.66 ± 0.42% and the mean PSNR for this region was 22.9 ± 3.7 dB. For the full CTs, the mean MAE was 72.9 ± 88.1 HU and the mean PSNR was 31.2 ± 2.2 dB.Our machine learning-based method provides a proof of concept of a way to generate synthetic CTs and DRRs for accurate dose calculation and fiducial localization for use in radiation treatment of the prostate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小值钱完成签到,获得积分10
1秒前
研友_nPPERn发布了新的文献求助10
2秒前
我要瘦发布了新的文献求助10
2秒前
solobang发布了新的文献求助10
2秒前
Sean发布了新的文献求助10
2秒前
Harry完成签到,获得积分10
3秒前
yxy999完成签到,获得积分10
3秒前
年华发布了新的文献求助10
3秒前
WZH123456完成签到,获得积分10
4秒前
orixero应助大胆盼兰采纳,获得10
4秒前
5秒前
5秒前
陈某某完成签到,获得积分10
5秒前
卡皮巴丘完成签到 ,获得积分10
6秒前
周少完成签到,获得积分10
6秒前
陶一二完成签到,获得积分10
8秒前
8秒前
8秒前
DocZhao完成签到 ,获得积分10
9秒前
apt完成签到,获得积分10
9秒前
9秒前
Three完成签到,获得积分10
10秒前
如果多年后完成签到 ,获得积分10
10秒前
SYLH应助solobang采纳,获得10
11秒前
SYLH应助solobang采纳,获得10
11秒前
灰色与青完成签到,获得积分10
11秒前
852应助幸福胡萝卜采纳,获得10
11秒前
虞无声应助年华采纳,获得10
11秒前
12秒前
香菜发布了新的文献求助10
13秒前
hf发布了新的文献求助10
13秒前
15秒前
爱听歌长颈鹿完成签到,获得积分20
15秒前
852应助抓恐龙采纳,获得10
15秒前
16秒前
小小鱼完成签到,获得积分10
16秒前
16秒前
单薄的小鸽子完成签到,获得积分10
17秒前
18秒前
charon完成签到,获得积分20
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678