亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Synthetic digital reconstructed radiographs for MR-only robotic stereotactic radiation therapy: A proof of concept

基准标记 赛博刀 放射外科 计算机科学 人工智能 基本事实 图像配准 核医学 可视化 医学影像学 计算机视觉 医学 放射治疗 放射科 图像(数学)
作者
Gregory Szalkowski,Dong Nie,Tong Zhu,Pew‐Thian Yap,Jun Lian
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:138: 104917-104917 被引量:4
标识
DOI:10.1016/j.compbiomed.2021.104917
摘要

To create synthetic CTs and digital reconstructed radiographs (DRRs) from MR images that allow for fiducial visualization and accurate dose calculation for MR-only radiosurgery.We developed a machine learning model to create synthetic CTs from pelvic MRs for prostate treatments. This model has been previously proven to generate synthetic CTs with accuracy on par or better than alternate methods, such as atlas-based registration. Our dataset consisted of 11 paired CT and conventional MR (T2) images used for previous CyberKnife (Accuray, Inc) radiotherapy treatments. The MR images were pre-processed to mimic the appearance of fiducial-enhancing images. Two models were trained for each parameter case, using a sub-set of the available image pairs, with the remaining images set aside for testing and validation of the model to identify the optimal patch size and number of image pairs used for training. Four models were then trained using the identified parameters and used to generate synthetic CTs, which in turn were used to generate DRRs at angles 45° and 315°, as would be used for a CyberKnife treatment. The synthetic CTs and DRRs were compared visually and using the mean squared error and peak signal-to-noise ratio against the ground-truth images to evaluate their similarity.The synthetic CTs, as well as the DRRs generated from them, gave similar visualization of the fiducial markers in the prostate as the true counterparts. There was no significant difference found for the fiducial localization for the CTs and DRRs. Across the 8 DRRs analyzed, the mean MSE between the normalized true and synthetic DRRs was 0.66 ± 0.42% and the mean PSNR for this region was 22.9 ± 3.7 dB. For the full CTs, the mean MAE was 72.9 ± 88.1 HU and the mean PSNR was 31.2 ± 2.2 dB.Our machine learning-based method provides a proof of concept of a way to generate synthetic CTs and DRRs for accurate dose calculation and fiducial localization for use in radiation treatment of the prostate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Captain发布了新的文献求助10
4秒前
Criminology34应助陈陈采纳,获得10
8秒前
xiaoguoxiaoguo完成签到,获得积分10
9秒前
15秒前
15秒前
19秒前
盛夏如花发布了新的文献求助10
20秒前
22秒前
藏锋完成签到 ,获得积分10
33秒前
Danta发布了新的文献求助10
33秒前
李健应助忧心的迎天采纳,获得10
36秒前
CodeCraft应助科研通管家采纳,获得10
41秒前
昔年若许完成签到,获得积分10
51秒前
Hello应助小羊咩咩采纳,获得10
54秒前
CodeCraft应助belolit采纳,获得10
1分钟前
身法马可波罗完成签到 ,获得积分10
1分钟前
TsuKe完成签到,获得积分10
1分钟前
周以筠完成签到 ,获得积分10
1分钟前
木土完成签到 ,获得积分10
1分钟前
1分钟前
司空天德发布了新的文献求助10
1分钟前
张安然发布了新的文献求助10
1分钟前
张安然完成签到,获得积分10
1分钟前
1分钟前
晨曦呢完成签到 ,获得积分10
1分钟前
小枣完成签到 ,获得积分10
1分钟前
1分钟前
YuZhang完成签到 ,获得积分10
1分钟前
1分钟前
温柔的水卉完成签到,获得积分10
1分钟前
憨憨的跳跳完成签到 ,获得积分10
1分钟前
belolit发布了新的文献求助10
1分钟前
wang@163.com完成签到,获得积分20
1分钟前
三两白菜完成签到,获得积分10
2分钟前
今后应助flyingdodoro采纳,获得10
2分钟前
sidashu完成签到,获得积分10
2分钟前
一个大花瓶完成签到 ,获得积分10
2分钟前
2分钟前
Bin_Liu发布了新的文献求助10
2分钟前
陈陈完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634616
求助须知:如何正确求助?哪些是违规求助? 4731648
关于积分的说明 14988748
捐赠科研通 4792317
什么是DOI,文献DOI怎么找? 2559479
邀请新用户注册赠送积分活动 1519764
关于科研通互助平台的介绍 1479903