Object Depth Measurement and Filtering from Monocular Images for Unmanned Aerial Vehicles

计算机视觉 人工智能 计算机科学 特征(语言学) 单眼 束流调整 卡尔曼滤波器 单目视觉 职位(财务) 过程(计算) 像素 对象(语法) 摄影测量学 语言学 操作系统 哲学 财务 经济
作者
Chuanqi Zhang,Yunfeng Cao,Meng Ding,Li Xu
出处
期刊:Journal of aerospace information systems [American Institute of Aeronautics and Astronautics]
卷期号:19 (3): 214-223 被引量:2
标识
DOI:10.2514/1.i011022
摘要

The flight safety of low-altitude small fixed-wing unmanned aerial vehicles (UAVs) is often threatened by obstacles such as buildings. This requires UAVs to have the ability to autonomously measure the depth of objects ahead. However, existing depth measurement methods based on multiview geometry and handcrafted features still have problems in accuracy and scene suitability. This paper proposes an object depth measurement and filtering method for UAVs by using monocular images. Firstly, the length of the line segment between feature points instead of the pixel position of feature point is used to solve object depth, which reduces the adverse effect of feature matching error. Meanwhile, in order to adapt to UAV platforms, height and attitude changes are both considered in the modeling process. Moreover, the sequence of object depth values corresponding to the image sequence is filtered by an extended Kalman filter to reduce oscillations. The effectiveness of the whole scheme is verified by visual simulation. Results show that the proposed method achieves better accuracy than other depth measurement methods based on multiview geometry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
果果发布了新的文献求助10
刚刚
酷炫醉山完成签到 ,获得积分10
1秒前
1秒前
万能图书馆应助愉快敏采纳,获得10
1秒前
fairy完成签到,获得积分10
1秒前
CipherSage应助哭泣老三采纳,获得10
1秒前
quhayley应助流年采纳,获得10
2秒前
万能图书馆应助妖妖采纳,获得10
2秒前
jiaojaioo完成签到,获得积分10
2秒前
2秒前
传奇3应助Fiona采纳,获得10
4秒前
榆木逢冰完成签到,获得积分10
4秒前
4秒前
yongji发布了新的文献求助20
4秒前
4秒前
lingling完成签到,获得积分10
5秒前
LP发布了新的文献求助10
5秒前
科学家发布了新的文献求助10
5秒前
5秒前
似鱼完成签到,获得积分10
5秒前
6秒前
11完成签到,获得积分10
6秒前
6秒前
sjk完成签到,获得积分10
6秒前
rgaerva发布了新的文献求助10
6秒前
7秒前
nina完成签到,获得积分10
8秒前
华仔应助小瓶子采纳,获得10
8秒前
9秒前
9秒前
9秒前
小二郎应助留下就好采纳,获得10
10秒前
10秒前
quhayley应助rgaerva采纳,获得10
10秒前
CWNU_HAN应助rgaerva采纳,获得30
10秒前
果果完成签到,获得积分10
11秒前
11秒前
11秒前
感动羊青发布了新的文献求助10
11秒前
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148931
求助须知:如何正确求助?哪些是违规求助? 2799908
关于积分的说明 7837731
捐赠科研通 2457479
什么是DOI,文献DOI怎么找? 1307870
科研通“疑难数据库(出版商)”最低求助积分说明 628312
版权声明 601685