已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A variable selection method based on mutual information and variance inflation factor

多重共线性 方差膨胀系数 共线性 特征选择 相互信息 统计 降维 变量 差异(会计) 变量(数学) 线性回归 数学 计算机科学 计量经济学 人工智能 业务 数学分析 会计
作者
Jiehong Cheng,Jun Sun,Kunshan Yao,Min Xu,Yan Cao
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:268: 120652-120652 被引量:43
标识
DOI:10.1016/j.saa.2021.120652
摘要

Feature selection plays a vital role in the quantitative analysis of high-dimensional data to reduce dimensionality. Recently, the variable selection method based on mutual information (MI) has attracted more and more attention in the field of feature selection, where the relevance between the candidate variable and the response is maximized and the redundancy of the selected variables is minimized. However, multicollinearity often is a serious problem in linear models. Collinearity can cause unstable parameter estimation, unreliable models, and weak predictive ability. In order to address this problem, the variance inflation factor (VIF) was introduced for feature selection. Therefore, a variable selection method based on MI combined with VIF was proposed in this paper, called Mutual Information-Variance Inflation Factor (MI-VIF). By calculating the MI between the independent variable and the response variable, the variable with greater MI was selected to maximize the correlation between the independent variable and the response variable. By calculating the VIF between the independent variables, the multicollinearity test was performed. The variables that cause the multicollinearity of the model were eliminated to minimize the collinearity between the independent variables. The proposed method was tested based on two high-dimensional spectral datasets. The regression models (PLSR, MLR) were established based on feature selection through MI-VIF and MI-based methods (MIFS, MMIFS) to compare the prediction accuracy of the models. The results showed that under two datasets, the MI-VIF showed a good prediction performance. Based on the tea dataset, the established MI-VIF-MLR model achieved accuracy with Rp2 of 0.8612 and RMSEP of 0.4096, the MI-VIF-PLSR model achieved accuracy with Rp2 of 0.8614 and RMSEP of 0.4092. Based on the diesel fuels dataset, the established MI-VIF-MLR model achieved accuracy with Rp2 of 0.9707 and RMSEP of 0.6568, the MI-VIF-PLSR model achieved accuracy with Rp2 of 0.9431 and RMSEP of 0.9675. In addition, the MI-VIF was compared with the Successive projections algorithm (SPA), which is a method to reduce the collinearity between variables in the wavelength selection of the near-infrared spectrum. It was found that MI-VIF also had a good predictive effect compared to SPA. It proves that the MI-VIF is an effective variable selection method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助Mark_He采纳,获得10
刚刚
汉堡包应助韵寒采纳,获得10
1秒前
赘婿应助平平采纳,获得10
2秒前
呐呐呐呐呐呐完成签到,获得积分20
2秒前
3秒前
4秒前
7秒前
小二郎应助呐呐呐呐呐呐采纳,获得30
8秒前
9秒前
鹏程万里发布了新的文献求助10
11秒前
12秒前
zcg发布了新的文献求助10
13秒前
平平完成签到,获得积分20
13秒前
Mark_He发布了新的文献求助10
16秒前
18秒前
QCB完成签到 ,获得积分10
20秒前
22秒前
平平发布了新的文献求助10
26秒前
甜美坤完成签到 ,获得积分10
27秒前
QAQ发布了新的文献求助30
29秒前
文文完成签到 ,获得积分10
30秒前
路飞完成签到 ,获得积分10
32秒前
标致的安莲完成签到,获得积分10
42秒前
9752249发布了新的文献求助10
46秒前
krajicek完成签到,获得积分10
48秒前
英姑应助Mark_He采纳,获得10
49秒前
52秒前
53秒前
53秒前
韩寒完成签到 ,获得积分10
56秒前
韵寒发布了新的文献求助10
57秒前
YangXiao完成签到 ,获得积分20
59秒前
Mark_He完成签到,获得积分20
59秒前
毛毛发布了新的文献求助30
1分钟前
1分钟前
1分钟前
ADDDD留下了新的社区评论
1分钟前
英俊的铭应助9752249采纳,获得10
1分钟前
丽丽完成签到,获得积分10
1分钟前
QAQ完成签到,获得积分10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307263
求助须知:如何正确求助?哪些是违规求助? 2940973
关于积分的说明 8499960
捐赠科研通 2615205
什么是DOI,文献DOI怎么找? 1428784
科研通“疑难数据库(出版商)”最低求助积分说明 663525
邀请新用户注册赠送积分活动 648382