亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A variable selection method based on mutual information and variance inflation factor

多重共线性 方差膨胀系数 共线性 特征选择 相互信息 统计 降维 变量 差异(会计) 变量(数学) 线性回归 数学 维数之咒 计算机科学 选择(遗传算法) Lasso(编程语言) 计量经济学 人工智能 万维网 业务 数学分析 会计
作者
Jiehong Cheng,Jun Sun,Kunshan Yao,Min Xu,Yan Cao
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:268: 120652-120652 被引量:162
标识
DOI:10.1016/j.saa.2021.120652
摘要

Feature selection plays a vital role in the quantitative analysis of high-dimensional data to reduce dimensionality. Recently, the variable selection method based on mutual information (MI) has attracted more and more attention in the field of feature selection, where the relevance between the candidate variable and the response is maximized and the redundancy of the selected variables is minimized. However, multicollinearity often is a serious problem in linear models. Collinearity can cause unstable parameter estimation, unreliable models, and weak predictive ability. In order to address this problem, the variance inflation factor (VIF) was introduced for feature selection. Therefore, a variable selection method based on MI combined with VIF was proposed in this paper, called Mutual Information-Variance Inflation Factor (MI-VIF). By calculating the MI between the independent variable and the response variable, the variable with greater MI was selected to maximize the correlation between the independent variable and the response variable. By calculating the VIF between the independent variables, the multicollinearity test was performed. The variables that cause the multicollinearity of the model were eliminated to minimize the collinearity between the independent variables. The proposed method was tested based on two high-dimensional spectral datasets. The regression models (PLSR, MLR) were established based on feature selection through MI-VIF and MI-based methods (MIFS, MMIFS) to compare the prediction accuracy of the models. The results showed that under two datasets, the MI-VIF showed a good prediction performance. Based on the tea dataset, the established MI-VIF-MLR model achieved accuracy with Rp2 of 0.8612 and RMSEP of 0.4096, the MI-VIF-PLSR model achieved accuracy with Rp2 of 0.8614 and RMSEP of 0.4092. Based on the diesel fuels dataset, the established MI-VIF-MLR model achieved accuracy with Rp2 of 0.9707 and RMSEP of 0.6568, the MI-VIF-PLSR model achieved accuracy with Rp2 of 0.9431 and RMSEP of 0.9675. In addition, the MI-VIF was compared with the Successive projections algorithm (SPA), which is a method to reduce the collinearity between variables in the wavelength selection of the near-infrared spectrum. It was found that MI-VIF also had a good predictive effect compared to SPA. It proves that the MI-VIF is an effective variable selection method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吃饱再睡完成签到 ,获得积分10
9秒前
魔幻安南完成签到 ,获得积分10
9秒前
小蘑菇应助Focus采纳,获得10
11秒前
13秒前
17秒前
17秒前
eazin完成签到 ,获得积分10
18秒前
20秒前
ying发布了新的文献求助10
22秒前
共享精神应助尹恩惠采纳,获得10
23秒前
Focus发布了新的文献求助10
23秒前
科研通AI5应助yulian采纳,获得10
23秒前
风花雪月完成签到 ,获得积分10
25秒前
Focus完成签到,获得积分20
30秒前
31秒前
fantianhui完成签到 ,获得积分10
31秒前
尹恩惠发布了新的文献求助10
35秒前
枫叶完成签到 ,获得积分10
41秒前
尹恩惠完成签到,获得积分10
42秒前
43秒前
呜呼完成签到,获得积分10
47秒前
siqilinwillbephd完成签到 ,获得积分10
54秒前
佐敦完成签到,获得积分10
56秒前
wdd完成签到 ,获得积分10
58秒前
lllkkk完成签到,获得积分20
1分钟前
keaid完成签到 ,获得积分10
1分钟前
纯情的无色完成签到 ,获得积分10
1分钟前
草上飞完成签到 ,获得积分10
1分钟前
cappuccino完成签到 ,获得积分10
1分钟前
我真的要好好学习完成签到 ,获得积分10
1分钟前
1分钟前
喜悦宫苴完成签到,获得积分10
1分钟前
夜话风陵杜完成签到 ,获得积分0
1分钟前
合一海盗完成签到,获得积分10
1分钟前
小马甲应助科研通管家采纳,获得10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
ding应助认真的寒香采纳,获得10
1分钟前
1分钟前
小白白完成签到 ,获得积分10
1分钟前
苏苏苏发布了新的文献求助10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965542
求助须知:如何正确求助?哪些是违规求助? 3510831
关于积分的说明 11155263
捐赠科研通 3245323
什么是DOI,文献DOI怎么找? 1792808
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176