亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A variable selection method based on mutual information and variance inflation factor

多重共线性 方差膨胀系数 共线性 特征选择 相互信息 统计 降维 变量 差异(会计) 变量(数学) 线性回归 数学 维数之咒 计算机科学 选择(遗传算法) Lasso(编程语言) 计量经济学 人工智能 数学分析 会计 业务 万维网
作者
Jiehong Cheng,Jun Sun,Kunshan Yao,Min Xu,Yan Cao
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:268: 120652-120652 被引量:162
标识
DOI:10.1016/j.saa.2021.120652
摘要

Feature selection plays a vital role in the quantitative analysis of high-dimensional data to reduce dimensionality. Recently, the variable selection method based on mutual information (MI) has attracted more and more attention in the field of feature selection, where the relevance between the candidate variable and the response is maximized and the redundancy of the selected variables is minimized. However, multicollinearity often is a serious problem in linear models. Collinearity can cause unstable parameter estimation, unreliable models, and weak predictive ability. In order to address this problem, the variance inflation factor (VIF) was introduced for feature selection. Therefore, a variable selection method based on MI combined with VIF was proposed in this paper, called Mutual Information-Variance Inflation Factor (MI-VIF). By calculating the MI between the independent variable and the response variable, the variable with greater MI was selected to maximize the correlation between the independent variable and the response variable. By calculating the VIF between the independent variables, the multicollinearity test was performed. The variables that cause the multicollinearity of the model were eliminated to minimize the collinearity between the independent variables. The proposed method was tested based on two high-dimensional spectral datasets. The regression models (PLSR, MLR) were established based on feature selection through MI-VIF and MI-based methods (MIFS, MMIFS) to compare the prediction accuracy of the models. The results showed that under two datasets, the MI-VIF showed a good prediction performance. Based on the tea dataset, the established MI-VIF-MLR model achieved accuracy with Rp2 of 0.8612 and RMSEP of 0.4096, the MI-VIF-PLSR model achieved accuracy with Rp2 of 0.8614 and RMSEP of 0.4092. Based on the diesel fuels dataset, the established MI-VIF-MLR model achieved accuracy with Rp2 of 0.9707 and RMSEP of 0.6568, the MI-VIF-PLSR model achieved accuracy with Rp2 of 0.9431 and RMSEP of 0.9675. In addition, the MI-VIF was compared with the Successive projections algorithm (SPA), which is a method to reduce the collinearity between variables in the wavelength selection of the near-infrared spectrum. It was found that MI-VIF also had a good predictive effect compared to SPA. It proves that the MI-VIF is an effective variable selection method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_nqrKQZ发布了新的文献求助30
刚刚
科研通AI6应助星晴采纳,获得10
5秒前
丰富靖琪完成签到 ,获得积分10
7秒前
Dreamchaser完成签到,获得积分10
11秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
BowieHuang应助科研通管家采纳,获得10
32秒前
BowieHuang应助科研通管家采纳,获得10
33秒前
40秒前
41秒前
47秒前
biebie发布了新的文献求助20
52秒前
简单完成签到 ,获得积分10
54秒前
海风吹过小镇完成签到 ,获得积分10
56秒前
biebie完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
HYQ完成签到 ,获得积分10
2分钟前
星晴发布了新的文献求助10
2分钟前
3分钟前
miracle关注了科研通微信公众号
3分钟前
miracle发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
Y8发布了新的文献求助10
3分钟前
3分钟前
orixero应助星晴采纳,获得10
3分钟前
Y8完成签到,获得积分10
3分钟前
4分钟前
4分钟前
矮小的猕猴桃完成签到,获得积分10
4分钟前
GingerF应助abcd采纳,获得60
4分钟前
GingerF应助abcd采纳,获得70
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
BowieHuang应助科研通管家采纳,获得10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534249
求助须知:如何正确求助?哪些是违规求助? 4622308
关于积分的说明 14582538
捐赠科研通 4562554
什么是DOI,文献DOI怎么找? 2500225
邀请新用户注册赠送积分活动 1479786
关于科研通互助平台的介绍 1450938