The drivers of systemic risk in financial networks: a data-driven machine learning analysis

系统性风险 可解释性 休克(循环) 脆弱性(计算) 金融机构 机构 业务 机器学习 精算学 经济 计算机科学 财务 金融危机 医学 计算机安全 社会学 内科学 宏观经济学 社会科学
作者
Michel Alexandre,Thiago Christiano Silva,Colm Connaughton,Francisco A. Rodrigues
出处
期刊:Chaos Solitons & Fractals [Elsevier]
卷期号:153: 111588-111588 被引量:13
标识
DOI:10.1016/j.chaos.2021.111588
摘要

The purpose of this paper is to assess the role of financial variables and network topology as determinants of systemic risk (SR). The SR, for different levels of the initial shock, is computed for institutions in the Brazilian interbank market by applying the differential DebtRank methodology. The financial institution(FI)-specific determinants of SR are evaluated through two machine learning techniques: XGBoost and random forest. Shapley values analysis provided a better interpretability for our results. Furthermore, we performed this analysis separately for banks and credit unions. We have found the importance of a given feature in driving SR varies with i) the level of the initial shock, ii) the type of FI, and iii) the dimension of the risk which is being assessed – i.e., potential loss caused by (systemic impact) or imputed to (systemic vulnerability) the FI. Systemic impact is mainly driven by topological features for both types of FIs. However, while the importance of topological features to the prediction of systemic impact of banks increases with the level of the initial shock, it decreases for credit unions. Concerning systemic vulnerability, this is mainly determined by financial features, whose importance increases with the initial shock level for both types of FIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
2秒前
王又梅完成签到,获得积分10
2秒前
Phosphene应助eeeee采纳,获得10
3秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
Grayball应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
shinysparrow应助科研通管家采纳,获得200
5秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
xiaoming应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
8R60d8应助科研通管家采纳,获得10
6秒前
6秒前
英姑应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
8R60d8应助科研通管家采纳,获得10
6秒前
zhanglh完成签到,获得积分10
6秒前
7秒前
田様应助目土土采纳,获得10
7秒前
哇咔咔发布了新的文献求助10
7秒前
8秒前
bzy发布了新的文献求助10
9秒前
9秒前
wl5289发布了新的文献求助10
11秒前
11秒前
orixero应助踏实的曲奇采纳,获得10
11秒前
鲜于飞薇发布了新的文献求助10
13秒前
15秒前
悦耳玲完成签到 ,获得积分10
15秒前
xgs完成签到,获得积分20
15秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138292
求助须知:如何正确求助?哪些是违规求助? 2789301
关于积分的说明 7790796
捐赠科研通 2445551
什么是DOI,文献DOI怎么找? 1300593
科研通“疑难数据库(出版商)”最低求助积分说明 625971
版权声明 601065